

**Republic of Iraq
Ministry of Higher
Education and Scientific
Research University of
Alzahrawi College of
Dentistry**

Effect of hormonal changes on periodontal health in pregnant women (comparative study)

A thesis

Submitted to the council of College of Dentistry / University of **Alzahrawi**
in partial fulfillment of the requirements for the Degree of Bachelor of
Science in Preventive Dentistry

By

Ahmed Adnan Abd Al-Hussein
Ayah Abbas Fadel
Mariam Najeh Nouri
Rawan Majed Hadi

Supervised by
Dr. Asmaa Mohammed Muhnna
B.D.S, M.Sc. Periodontics

2025 A.D.

1446 A.H.

DEDICATION

To my first and last supporter, my beloved,
my heaven, mama.

To my dear father for his support and
encouragement to reach my dream

ACKNOWLEDGMENTS

My great and deep thanks to **Allah almighty** for giving me this opportunity and the strength to complete our project.

Sincere thanks and respect to,

ABSTRACT

Objective; This study investigates the prevalence of periodontal conditions—specifically "Bleeding on Probing" (BOP) and periodontitis—among pregnant individuals compared to a control group of non-pregnant individuals.

Material and method: A total of 80 participants were analyzed, equally divided between the two groups. Used periodontal pocket index and Bleeding on probing index.

Result: Findings reveal that 86% of pregnant individuals displayed signs of gingivitis, contrasting sharply with only 20% in the control group, highlighting the increased risk of periodontal issues associated with pregnancy. Furthermore, the distribution of probing pocket depth (PPD) indicates that 53% of pregnant participants were diagnosed with periodontitis, compared to only 7% in the control group.

Conclusion: These results suggest a significant correlation between pregnancy and deteriorating oral health, likely influenced by hormonal changes and altered immune responses during this period. The study underscores the necessity for enhanced dental health awareness and preventive care among pregnant individuals to mitigate the risks of periodontal disease and improve overall health outcomes.

Title No.	Subject	Page No.
	Dedication	I
	Acknowledgement	II
	Certification of the supervisor	III
	Certification of the discussion committee	IV
	List of abbreviations	V
	List of contents	VI
	List of figures	VII,VIII
	Introduction	1
Chapter 1: Review of literature		
1.1	Periodontal diseases	2
1.1.1.	Classification Periodontal diseases	2
1.1.3	Gingivitis	3
1.1.4	Chronic Periodontitis	5
1.2	Pregnancy	6
1.2.1	Systemic changes during pregnancy	7
1.2.2	Ovarian changes	9
1.2.2.1	Estrogen	10
1.2.2.2	Progesterone	10
1.2.3	Oral hygiene and oral health status among pregnant women	13
	Chapter Tow material and method	15
	Chapter Three Result	17
	Chapter four Discussion	19
	Conclusion and recommendation	20
s	References	48

List of Figure

Figure	Page No.
Figure (1-1): Plaque induced gingivitis (Bathla, 2017).	3
Figure (1- 2): Chronic periodontitis	5

Figure: (1-3) Metabolism of vitamin D3 in the body.	6
Figure 1-4 Simple Distribution according condition	7

List of Table

Table	Pag e No.
Table 1 Simple Distribution according condition	3
Table 2 Simple Distribution according BOP	5
Table 3 Simple Distribution according PPD.	6

LIST OF ABBREVIATIONS AND SYMBOL

%	Percentage
1st	First
2nd	Second
3rd	Third
ADA	American Dental Association
ANOVA	Analysis of Variance
BMD	Bone mineral density
Ca	Calcium
CAL	Clinical attachment loss
CEQ	Closed end question
CPI	Community periodontal index
D.W	Distilled water
DMFS	Decay, missed, filled surface index
DMFT	Decay, missed, filled teeth index
DS	Decayed surface
DT	Decayed teeth
ELISA	Enzyme linked immunosorbent assay
FDI	Federation Dentaire Internationale
Fl	Flerovium

FS	Filled surface
FT	Filled teeth
GI	Gingival index
H₂O	Water
HCl	Hydrochloric acid
HPR	Horse Radish
Peroxidase	
ICC	Intraclass correlation
coefficient	
IU	International unit
KAB and behavior	Knowledge, attitude ¹ and behavior
LaCl₃	Lanthanum chloride
MCQ question	Multiple choice
mL	Milliliter
mmol/L	millimol/liter

SE	Standard error
SPSS	Statistical Package for Social Sciences
T-test	T- sample test
TTW	Total tooth wear
US foods	United signature foods
VD3	Vitamin D3
WHO	World health organization
W/V	Weight /volume
µL	Microliter

INTRODUCTION

Pregnancy is a unique physiological state characterized by significant hormonal and immunological changes that profoundly impact a woman's health. Among the various health aspects affected, oral health has gained attention, as the alterations that occur during pregnancy can increase susceptibility to oral diseases such as periodontal disease and dental caries. The immune system adaptations during this period can diminish the body's capacity to respond effectively to oral infections, complicating the maintenance of oral health.. (Srinivas S et al, 2012).

Research indicates that the interplay between physiological and hormonal changes during pregnancy can lead to heightened vulnerability to periodontal diseases, which are among the most prevalent health issues faced by pregnant women. Despite the increasing awareness of oral health during pregnancy, findings from studies investigating the relationship between pregnancy and oral health remain inconclusive. Factors such as dental plaque accumulation, microbial composition variations, salivary changes, and pH decreases are believed to contribute to the frequent occurrence of these oral diseases during pregnancy.. (Fatma Y et al ,2024).

Bacterial plaque is the main cause of periodontal disease initiation. Additionally, sex hormones play a significant role as modifying factors that affect the development of these diseases. Although extensive research has established a connection between periodontal health and the dynamics of sex hormones, the precise molecular mechanisms and therapeutic approaches are still not fully understood. Fatma Y et al ,2024).

periodontal disease is one component of oral health that is linked to pregnancy. Periodontal disorders are frequent chronic inflammatory illnesses with multiple etiologies; nonetheless, gingivitis is the most common kind of periodontal disease encountered in pregnancy (Chickanna et al., 2015).

The increased secretion of gestational hormones (especially estrogen and progesterone) during pregnancy has been linked to pregnancy gingivitis (Yalcin et al., 2002; Gürsoy et al., 2008; Ortiz-Sánchez et al., 2021). Iraqi studies have been conducted the severity of gingivitis in pregnant women a controversy results were recorded (Mohammed, 2005; AL-Zaidi, 2007; Issa, 2011; Mutlak, 2016; Al

Najjar, 2018; Baydaa
Hussein, 2019).

AIM OF THE STUDY

Aim: to investigate the impact of hormonal changes during pregnancy on periodontal health in pregnant women

CHAPTER ONE REVIEW OF LITERATURE

1.1 Periodontal diseases

1. Definition

structures of the teeth, including the gums, periodontal ligament, cementum, and alveolar bone. These diseases arise from the interaction between bacteria and the immune response of the host. The presence of harmful microorganisms plays a crucial role in the development and progression of periodontal diseases, and how the body responds to these pathogens is also significant in the advancement of the disease. (**Craig, 2003**).

Periodontal diseases are classified into gingivitis and periodontitis. Gingivitis may be defined as the gingival inflammation; It is reversible with good oral hygiene practice by the patient him or herself (**Armitage, 2004**).

While periodontitis is the more destructive form of periodontal diseases, In which the inflammation extends to the alveolar bone that support the teeth and results in periodontal pocket formation, periodontium destruction, attachment loss, alveolar bone resorption, and these symptoms will lead to tooth mobility and finally tooth loss (**Carranza, 2012**).

Several risk factors contribute to the increase of periodontal disease, including cigarette smoking, systemic illnesses, certain medications like steroids, anti-epileptic drugs, and cancer treatment drugs. Other contributing factors include ill-fitting dental bridges, misaligned teeth, and loose fillings, as well as pregnancy and the use of oral contraceptives. Additionally, any medical condition that affects the body's antibacterial defense mechanisms, such as human immunodeficiency virus (HIV) infection, diabetes, and disorders related to neutrophils, is likely to exacerbate periodontal disease. (**Loesche and Grossman, 2001**).

When evaluating the severity of periodontal disease, probing depth serves as an effective measure of disease progression. In a healthy periodontal condition, there are no losses of epithelial attachment or formation of pockets, and the depth of the gingival sulcus typically ranges from 2 to 3 mm. (**Angeli *et al.*, 2003**).

Periodontal pockets can extend between 4 and 12 mm. clinically, patients with periodontal pockets of 4 mm or more are diagnosed with periodontitis. Patients with periodontal pockets of 6 mm or more are diagnosed with advanced or severe periodontitis (**Elter *et al.*, 2004**).

1.1.2 Classification Periodontal disease

The classification of periodontal diseases established by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) in 2018 is outlined as follows:

Periodontal Health, Gingival Diseases, and Conditions

1. Periodontal health and gingival health

- a) Clinical gingival health on an intact periodontium
- b) Clinical gingival health on a reduced periodontium

2. Gingivitis: Dental Biofilm Induced

- a) Associated with dental biofilm alone
- b) Mediated by systemic or local risk factors
- c) Drug-influenced gingival enlargement

3. Gingival Diseases: Non-Dental Biofilm-Induced

Periodontitis

1. Necrotizing periodontal diseases

2. Periodontitis

3. Periodontitis as Manifestation of Systemic Diseases

Systemic and Other Periodontal Conditions

1. Systemic diseases or conditions affecting the periodontal supporting tissues

2. Other Periodontal Conditions

3. Mucogingival Deformities and Conditions around teeth

4. Traumatic Occlusal Forces

5. Prosthesis and tooth-related factors that modify or predispose to plaque-induced diseases/periodontitis

Peri-implant Diseases and Conditions

1. Peri-implant health

2. Peri-implant mucositis

3. Peri-implantitis

4. Peri-implant soft and hard tissue deficiencies

1.1.3 Gingivitis

Plaque-induced gingivitis is the most prevalent type of periodontal disease (Califano, 2003) and is recognized as the second most common oral condition after dental caries, impacting over 75% of people globally. (Petersen 2003, Papapanou 1999).

Gingivitis is commonly recognized as a localized inflammatory condition triggered by the buildup of dental biofilm (Holmstrup et al., 2018). It is marked by symptoms such as gum bleeding, redness, and swelling, without any loss of periodontal attachment (Murakami et al., 2018). The ongoing nature of this inflammation is associated with

the presence of microbial dental plaque. The inflammation will persist as long as this microbial biofilm remains near the gum tissues. (**Silness, 1964**), figure (1-1).

When compared to periodontitis, a peculiarity of plaque-induced gingivitis is the complete reversibility of the tissue alterations once the dental biofilm is removed. Notwithstanding the reversibility of the gingivitis-elicited tissue changes, gingivitis holds particular clinical significance because it is considered the precursor of periodontitis, a disease characterized by gingival inflammation combined with connective tissue attachment and bone loss (**Trombelli *et al.*, 2018**).

Figure (1-1): Plaque induced gingivitis (**Bathla, 2017**).

1.1.4 Periodontitis

periodontitis is an inflammatory disease that arises from multiple factors, linked to imbalanced dental plaque biofilms, and is marked by the gradual destruction of the structures that support the teeth (Papapanou, 2017). It poses a significant public health challenge due to its widespread occurrence and potential to result in tooth loss and impairment. Additionally, periodontitis adversely impacts chewing ability, which can, in turn, affect nutrition; it also contributes to social inequalities and diminishes overall quality of life. (**Kassebaum, 2014**), figure (1- 2).

Cases of periodontitis are assessed through various clinical parameters, which include clinical attachment level (CAL), probing depth (PD), bleeding on probing (BoP), and the extent of radiographic bone loss. (**Palmer *et al.*, 1999**).

The severity of periodontitis is evaluated according to the degree of attachment loss: 1-2 mm is regarded as mild, 3-4 mm as moderate, and 5 mm or more as severe periodontitis. The distinction between aggressive and chronic periodontitis is not clearly defined and relies on clinical characteristics. (**Bunæs, 2017**).

in adults without any particular familial pattern. This condition is marked by a persistent deterioration of periodontal tissues linked to subgingival plaque, calculus, and various individual risk factors. (**Shchipkova et al., 2010**).

The progression of periodontitis seems to be continuous with slow to moderate bursts of tissue destruction slowing off later in life (**Bagaitkar et al., 2011**).

The removal of calculus, management of plaque, and control of gingivitis are crucial in preventing the advancement of periodontitis, further attachment loss, and eventual tooth loss. (**Ramseier et al., 2017**).

Figure (1- 2): **Chronic periodontitis**

1.2 Pregnancy

Pregnancy is typically a physiological process that affects women and can result in a variety of physical, psychological, and hormonal changes (Soulissa, 2014).

The average duration of pregnancy is approximately 40 weeks, calculated from the first day of the last menstrual period (LMP), and is divided into three trimesters. The first trimester spans from week one to week twelve and encompasses conception, which occurs when a sperm fertilizes an egg. The resulting zygote then moves down the fallopian tube and implants itself in the uterus, where it begins developing into a fetus and placenta. The second trimester lasts from week thirteen to week twenty-eight, during which the fetus's movements may be felt around the midpoint. The third trimester extends from week twenty-nine to week forty. (Williams and Wilkins, 2012).

During pregnancy, the mother's body undergoes physiological changes designed to support the growth and homeostasis of the fetus while safeguarding her own health. These adjustments occur in the circulatory, respiratory, renal, and endocrine systems, ensuring that the fetus receives necessary energy and nutrients while efficiently removing excess heat and waste products. (Hacker et al., 2015).

1.2.1 Systemic changes during pregnancy

8

❖ Changes in the body weight

Ongoing weight gain during pregnancy is seen as a positive sign of the mother's adaptation and the baby's growth. This weight gain is associated with the baby's weight, the placenta, additional circulatory fluid, increased tissue mass, and reserves of fat and protein. (Lammi-Keefe et al., 2008).

❖ Morning sickness

Morning sickness, characterized by nausea and vomiting during pregnancy (NVP), affects up to 80% of pregnancies globally (Chortatos et al., 2013). Although it can occur at any time, it is most prevalent in the morning. Various theories suggest its causes, including infections, hormonal changes, and vitamin deficiencies (Jennifer and Niebyl, 2010). Typically, nausea symptoms subside by the 20th week, but around 10–20% of individuals may continue to experience them beyond this point, with some enduring symptoms until the end of their pregnancy. (Clark et al., 2012).

Hyperemesis gravidarum (HG) are characterised by severe nausea and vomiting. This is seen in 1-3% of women presenting with NVP and can lead to hospitalisation, malnutrition, weight loss, vitamin deficiencies and low birth weights (Clark et al., 2012).

❖ Cardiac and blood changes

During pregnancy, total blood volume increases by approximately 40% compared to pre-pregnancy levels, with considerable individual variation. Plasma volume begins to rise as early as the sixth week and levels off around 32 to 34 weeks, after which changes are minimal. In the second trimester, red blood cell mass starts to increase and continues to do so until delivery, reaching levels 20-35% higher than in non-pregnant individuals. This increase in plasma volume relative to red cell volume leads to hemodilution, often described as the physiological anemia of pregnancy, which results in lower hematocrit values.

By the tenth week, cardiac output has grown about 40% above non-pregnant levels, stabilizing from 20 to 24 weeks onward. This increase in cardiac output is due primarily to a rise in stroke volume (10-30%) during the first and second trimesters, while heart rate also increases slightly (by 12-18 beats per minute). Cardiac output peaks as blood volume continues to rise. Systolic blood pressure experiences a minor drop of 4-6 mm Hg,⁹ while diastolic pressure decreases more

significantly by 8–15 mm Hg. This decline begins in the first trimester, reaches its lowest point in mid-pregnancy, and gradually returns toward non-pregnant levels by the end of pregnancy. These physiological changes are indicative of increased cardiac output and decreased peripheral resistance characteristic of pregnancy. (Hacker et al., 2015).

❖ Renal system changes

During pregnancy, renal plasma flow and glomerular filtration rate (GFR) increase significantly, with rises of 40–65% and 50–85%, respectively, compared to non-pregnant levels. Additionally, the increase in plasma volume leads to a reduction in oncotic pressure within the glomeruli, which further contributes to the rise in GFR. (Cheung and Lafayette, 2013).

Vascular resistance decreases in both the afferent and efferent arterioles of the kidneys, allowing glomerular hydrostatic pressure to remain stable despite the significant increase in renal plasma flow, thus preventing glomerular hypertension (Priya et al., 2016). Additionally, the heightened renal blood flow during pregnancy leads to an increase in renal size by 1–1.5 cm, reaching its peak by mid-pregnancy. The mechanical pressures exerted on the ureters result in the dilation of the kidney, pelvis, and calyceal systems. These structural changes are influenced by progesterone, which decreases ureteral tone, peristalsis, and contraction pressure. (Cheung and Lafayette, 2013).

1.2.2 Ovarian changes

Estrogens and progestin are ovarian sex hormones primarily synthesized from cholesterol derived from the bloodstream, with a smaller contribution from acetyl coenzyme A, in the ovaries (Hall, 2015). The synthesis of these hormones begins with the anterior pituitary gland, which releases gonadotropins, specifically follicle stimulating hormone (FSH) and luteinizing hormone (LH), after receiving signals from hypothalamic gonadotropin-releasing hormone (GnRH). In turn, FSH and LH stimulate the production of estrogens and progestin. (Boron and Boulpaep, 2012).

1.2.2.1 Estrogen

Estrogen, also referred to as oestrogen, is a female sex hormone that facilitates the growth and division of specific cells in the body that contribute to the

development of secondary sexual characteristics in females. Additionally, human female plasma contains significant levels of three primary estrogens: estradiol, estrone, and estriol. Another form of estrogen, estetrol (E4), is uniquely produced during pregnancy. (Hall, 2015).

Estrogen daily production from placenta during the pregnancy increases times from normal range (25-75 pg/ml) toward the end of the pregnancy.

During pregnancy, main functions of estrogen include (Hall, 2015):

- Enlargement of the uterus of mother.
- Enlargement of the mother's breasts and growth of the breast ductal structure. Enlargement of the mother's female external genitalia. The estrogens also relax the pelvic ligaments of the mother, so the sacroiliac joints become relatively limber and the symphysis pubis becomes elastic.
- These changes allow easier passage of the fetus through the birth canal. There is much reason to believe that estrogens also affect many general aspects of fetal development during pregnancy, for example, by affecting the rate of cell reproduction in the early embryo (Hall, 2015).

1.2.2 Progesterone

Progesterone is a steroid with 21 carbon atoms that acts as a precursor in the synthesis of other steroids. It is predominantly produced by the granulosa-lutein cells in the corpus luteum (CL) during the luteal phase of the menstrual cycle (Niswender et al., 2000). Progesterone has two primary functions: it induces secretory changes in the uterine endometrium during the latter part of the menstrual cycle, preparing the uterus for the implantation of a fertilized egg, and it decreases the frequency and intensity of uterine contractions, helping to prevent the expulsion of the implanted egg. Progesterone is equally important as estrogen for a healthy pregnancy. Initially, the corpus luteum secretes moderate amounts of progesterone at the beginning of pregnancy, but later on, the placenta produces it in larger quantities. The following unique effects of progesterone are crucial for the proper advancement of pregnancy. (Hall, 2015):

- Progesterone causes decidual cells to develop in the uterine endometrium. These cells play an important role in the nutrition of the early embryo.
- Progesterone decreases the contractility of the pregnant uterus, thus preventing

uterine contractions from causing spontaneous abortion.

- Progesterone contributes to the development of the conceptus even before implantation because it specifically increases the secretions of the mother's fallopian tubes and uterus to provide appropriate nutritive matter for the developing morula (the spherical mass of 16 to 32 blastomeres formed before the blastula) and blastocyst. There is also reason to believe that progesterone affects cell cleavage in the early developing embryo.
 - The progesterone secreted during pregnancy helps estrogen in preparing the mother's breasts for lactation.

1.2.3 Oral hygiene and oral health status among pregnant women.

Oral health is vital for overall well-being but is often neglected by women during pregnancy, especially those from low-income backgrounds (Wagner and Heinrich-Weltzien, 2016). Pregnancy is a challenging condition that brings about considerable changes in metabolic and physiological functions (Soulissa, 2014). Consequently, some of the most significant physiological and hormonal transformations in a woman's life occur during this period (Laine, 2002), with particular emphasis on the oral cavity (Marla et al., 2018). These changes can manifest as pregnancy gingivitis, benign oral lesions, tooth mobility, tooth erosion, cavities, and periodontitis. (Amar and Chung, 2000; Annan and Nuamah, 2005; AL-Sultani., 2013)

Research conducted by Massoni et al. and Ho and Chou indicates that hormonal fluctuations during pregnancy influence the amount of biofilm present in periodontal tissues. For pregnant women, there is a positive correlation between the total subgingival bacteria and the severity of clinical diagnoses. Specifically, **Porphyromonas gingivalis** is known to thrive during the first trimester, as it utilizes progesterone as a growth factor in place of vitamin K. Additionally, the levels of various bacteria in the periodontal tissues—such as **Prevotella intermedia**, **Bacteroides melaninogenicus** ss., and **Fusobacterium nucleatum**—also correlate positively with hormone concentrations

Fluctuations in sex steroid hormones throughout pregnancy can significantly impact the metabolism of periodontal tissue. According to findings from

González-Jaranay et al., Edize et al., and Vidhale et al., most pregnant women experience gingivitis and periodontitis during all trimesters, with these conditions being particularly more common and severe during the third trimester compared to earlier stages of pregnancy and after delivery. Symptoms of gingivitis typically arise in the second month of pregnancy and worsen until the eighth month, followed by a regression postpartum that aligns with hormone concentration changes.

Periodontal tissue is notably affected by estrogen and progesterone, as increased levels of these hormones can stimulate human gingival fibroblasts to produce a higher quantity of cytokines. Pro-inflammatory cytokines like interleukin-6 (IL-6) and IL-8 can trigger and amplify inflammatory processes within the tissues. An increase in cytokine production has been linked to periodontal tissue damage, as it may interfere with neutrophil function—an important anti-inflammatory mechanism—and lead to an exaggerated inflammatory response to oral infections.

Elevated levels of estrogen and progesterone result in increased vascular permeability and capillary dilation in the gingival tissues, making them more susceptible to inflammation. Estrogen specifically enhances vascular permeability by altering the endothelial cells that line blood vessels, leading to fluid retention in gingival tissues and raising the risk of inflammation and bleeding. This heightened vascular response significantly contributes to pregnancy gingivitis, which affects 60–70% of pregnant individuals.

Additionally, hormonal changes during pregnancy affect the immune system, leading to an altered immune response in gingival tissues. Progesterone can weaken local immune defenses by diminishing the effectiveness of neutrophils and macrophages against bacterial plaque. This immunosuppressive effect facilitates bacterial buildup and gingival inflammation, thereby increasing the risk of periodontal disease progression during pregnancy.

- Pregnancy Gingivitis

In 1877, Pinard documented the first instance of "pregnancy gingivitis."¹³ Epidemiological studies have shown its prevalence varying from 35% to 100% This

condition is characterized by redness, swelling, overgrowth of gum tissue, and increased bleeding, with a histological profile similar to gingivitis. The front part of the mouth is more frequently affected, and interproximal areas are often involved (Hada, D. S. et al 2021)

The heightened tissue swelling leads to deeper pockets and can cause temporary tooth mobility. Inflammation in the anterior region may worsen due to increased mouth breathing resulting from pregnancy rhinitis. A study by Machuca et al. (1999) on 130 pregnant women found gingivitis present in 68% of participants, ranging from 46% among technical executives to 88% among manual workers. Cross-sectional studies comparing pregnant and postpartum women indicate that pregnancy is linked to significantly higher rates of gingivitis, even with similar plaque scores (Hada, D. S. et al 2021)

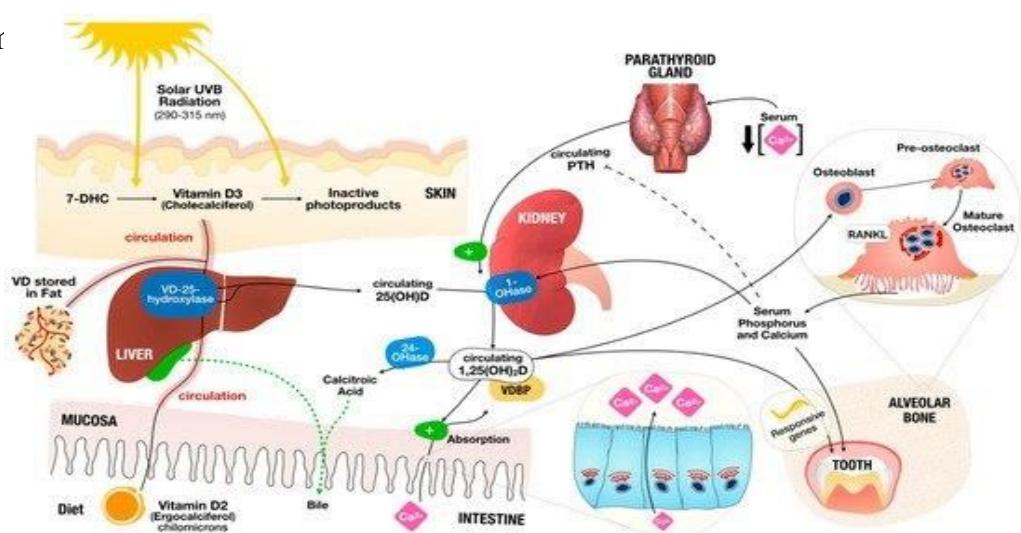
A more recent investigation involving a rural population of Sri Lankan women (Tilakaratne et al. 2000) revealed varying degrees of increased gingivitis among pregnant women compared to non-pregnant controls. The study showed a progressive rise in inflammation as pregnancy advanced, particularly notable in the second and third trimesters, despite plaque levels remaining steady. Three months after delivery, the level of gingival inflammation was comparable to what was observed in the first trimester of pregnancy. This indicates a direct relationship between gingivitis and sustained elevated levels of gestational hormones during pregnancy, with a decrease during the postpartum period. Investigations by Cohen et al. (1969) and Tilakaratne et al. (2000) found that the levels of attachment loss remained unchanged throughout pregnancy and three months after childbirth.

-pregnancy tumor

A pregnancy tumor is a pedunculated or sessile fibro-granulomatous growth that sometimes emerges during pregnancy. Its development is influenced by the vascular response triggered by progesterone along with the matrix-stimulating effects of estradiol, typically at locations where gingivitis already exists. These lesions commonly appear on the anterior papillae of the maxillary teeth and generally do not exceed 2 cm in diameter. They can bleed if injured, and it is advisable to postpone their removal until after childbirth, as significant reduction in

size often occurs post-delivery. Attempting surgical excision of the granuloma during pregnancy may lead to recurrence due to inadequate plaque control and hormone-related growth of the lesion. Maintaining diligent oral hygiene and performing debridement during pregnancy is crucial to help prevent the formation of these tumors (Hada, D. S. et al 2021)

- **Calcium and its relation to oral health status during pregnancy**


Saliva contains a considerable amount of calcium, and any variations in its levels can affect dental and oral health (Bakhshi et al., 2012). Total calcium levels in both stimulated and unstimulated saliva are typically lower during pregnancy compared to non-pregnant women (Öztürk et al., 2013). However, research indicates no significant differences in the total calcium content of saliva between pregnant and non-pregnant women (Guidozzi et al., 1992; Salvolini et al., 1998; Rockenbach et al., 2006). Calcium concentrations in saliva generally range from 1-3 mmol/L, influenced by salivary flow rates. When saliva shifts from an unstimulated to a stimulated state, the calcium concentration tends to drop. Given that calcium levels in submandibular and sublingual saliva are approximately twice that found in parotid saliva, this reduction during stimulation may result from an increase in the secretion of saliva from the parotid glands (Khan et al., 2005; Preethi et al., 2010). Calcium in saliva exists in two forms: ionized forms, which are essential for processes related to dental caries, and bound forms, such as calcium phosphate, which depend on the pH of the saliva. Ionized calcium makes up 50% of the total calcium concentration at average pH levels but increases as the salivary pH decreases; below a pH of 4, a significant portion of salivary calcium becomes ionized (Tibor et al., 2007; David, 2009; Preethi et al., 2010). Non-ionized calcium is associated with inorganic phosphate, bicarbonate, proteins (including prolin-rich protein, histidine, and statherin), organic acids (such as citric acid and uric acid), enzymes, and dietary carbohydrates (like monosaccharides, oligosaccharides, and polysaccharides). (David, 2009).

Calcium plays essential roles in saliva, including maintaining solubility products, supporting tooth structure, and activating enzymes (Choi, 2010). Enamel, primarily composed of hydroxyapatite (calcium and phosphate), benefits from saliva during the maturation process as teeth erupt and offers protection in the oral environment.

The calcium ions in saliva help to stabilize hard dental tissues, so a reduction in their concentration during pregnancy may raise the risk of dental caries (Bakhshi et al., 2012). While it is commonly believed that calcium is depleted from a mother's teeth to support the developing fetus, research indicates that there is "no significant withdrawal of calcium or other minerals from the tooth." Instead, it is the surrounding environment of the teeth that is affected (Laine, 2002).

During pregnancy, changes in saliva composition and oral microbiome, along with factors like vomiting, dietary alterations, and inadequate oral hygiene, may contribute to increased caries risk (Vadiakas and Lianos, 1988). This underscores the importance of calcium, as its presence in saliva can significantly influence remineralization and enhance the acid resistance of the outer enamel surface (de Almeida et al., 2008). Research findings indicate that lower salivary calcium levels are linked to a higher incidence of dental caries (Kamate et al., 2017). Similar results have been observed in studies conducted in Iraq, revealing an inverse relationship between dental caries experience and calcium levels. (Hasan and Diab, 2010; Aziz, 2014; Kadoum and Salih, 2014; Al-Tamimi and Al-Rawi, 2018; Al-Rawi, 2019).

According to Iraqi study conducted on pregnant women, it was found that the level of calcium in saliva is low and this may impact the increase in dental Caries experience is noted to be influenced by various factors (Issa, 2011). When saliva becomes oversaturated with ions like calcium, it can lead to the sedimentation of salivary glycoproteins, creating a favorable environment for pathogenic microorganisms (Zaīchk and Sht, 1994). Consequently, Acharya et al. (2011) found that individuals with periodontal disease exhibited higher salivary calcium levels compared to those without, suggesting that elevated salivary calcium

Figure: (1-3) Metabolism of vitamin D3 in the body.

ed by

enamel, dentin, and cementum, which are three distinct hard tissues. While tooth mineralization is similar to skeletal mineralization, if mineral metabolism is disrupted, failures similar to those seen in bone tissue will occur. Vitamin D is essential for bone and tooth mineralization, and when levels aren't controlled, it can result in the "rachitic tooth," a deficient and hypomineralized organ that's prone to fracture and decay (Foster et al., 2014; D'Ortenzio et al., 2018).

Vitamin D influences the pathogenesis of periodontal diseases (PD) by immunomodulation, raises bone mineral density (BMD), lowers bone resorption, and aids in the combat against periodontal disease-causing agents. There has been a surge of interest in and publication of studies on vitamin D's involvement in preventing and treating dental caries and periodontal disease (Schwalfenberg, 2011; Anand et al., 2013; Jagelavičienė et al., 2018). Researches has discovered links between periodontal health, Ca and vitamin D intake (Nishida et al., 2000; Dietrich et al., 2004) indicating that dietary calcium and vitamin D supplementation can enhance periodontal health, mandibular bone mineral density, and prevent alveolar bone loss (Hildebolt et al, 2004; Miley et al., 2009). Calcium and vitamin D supplementation at dosages greater than 800-1,000 IU daily can lower the severity of periodontal disease, according to a longitudinal study (Garcia et al., 2011). Bolstering the case for randomized clinical trials to investigate the potential beneficial effect of vitamin D on periodontal disease. In addition to its function in bone and calcium homeostasis, vitamin D acts as an anti-inflammatory agent by inhibiting immune cell cytokine expression and causing monocyte/macrophages to secrete antibiotic-like molecules (Liu et al., 2006; Cannell et al., 2008a; Cannell et al., 2008b; White, 2008). In truth, vitamin D insufficiency has been related to a higher risk of infectious diseases (Zittermann, 2003). Vitamin D appears to be useful in the treatment of periodontitis, not only because of its direct impact on bone metabolism, but also because it may have antibiotic properties against periodontopathogens and diminish inflammatory mediators involved in tissue destruction (Cochran, 2008).

Chapter Two

Materials and Methods

This study aimed to investigate the relationship between pregnancy and periodontal diseases by examining a total of 80 women from February 2, 2025, to April 2, 2025. Participants were divided into two equal groups of 40: pregnant women and a control group of non-pregnant women.

Participants:

- Pregnant Group: 40 pregnant women were recruited from prenatal clinics.
- Normal Group: 40 non-pregnant women were selected as a control group, age-matched to the pregnant group and free from any systemic health issues.

Assessment of Periodontal Health

Each participant underwent clinical examinations to assess periodontal health, focusing on two primary conditions: "Bleeding on Probing" (BOP) and probing depth (PPD).

1. Bleeding on Probing (BOP):

- Participants were evaluated for signs of gingivitis, indicating the presence of BOP during periodontal probing.
- Participants were categorized based on their gingival health status:
 - Healthy (no gingivitis) From 0-10 %
 - Gingivitis present up to 10

2. Probing Depth (PPD):

- The probing depth was measured to determine the presence of periodontitis.
- Classification:
 - Normal PPD: Participants demonstrating a probing depth within the normal range.(0-2.5)
 - Periodontitis: Participants with increased probing depths indicating periodontal disease. Above 3-5

Data Analysis:

The collected data were statistically analyzed to compare the prevalence of periodontal conditions between the two groups. Specific percentages were calculated to demonstrate the distribution of normal PPD and periodontitis within each group.

Table 1 Simple Distribution according condition

Simple	Frequency	Percentage
Pregnant	40	100%
Normal	40	100%
Total	80	100%

The dataset consists of two categories: "Pregnant" and "Normal," each with a frequency of 40, resulting in a total of 80 respondents.

- Pregnant: 40 individuals (50% of total)
- Normal: 40 individuals (50% of total)

Both categories represent equal halves of the sample, with each group accounting for 100% of its respective category. However, the percentages can be misleading if interpreted separately, as they don't reflect the overall distribution among the total respondents.

Figure 1-4 Simple Distribution according condition

Simple distribution according Bleeding on Probing index

BOP	Pregnant	Normal	Sig
Healthy	7(14%)	32(80%)	0.1
Gingivitis	33(86%)	8(20%)	
Total	40(100%)	40(100%)	

The results presented analyze the distribution of two dental conditions—"Bleeding on Probing" (BOP) and "Normal" status—among pregnant individuals and a control group of healthy individuals. Each group consists of 40 participants. Among pregnant individuals, 7 were classified as healthy (no gingivitis), representing 14% of this group, while 33 individuals (86%) displayed signs of gingivitis. In contrast, the normal group showed a significantly higher proportion of healthy individuals, with 32 (80%) reporting no gingivitis, while only 8 (20%) had gingivitis.

This stark disparity indicates that pregnant individuals experience a much greater prevalence of gingivitis compared to the normal group, suggesting they

are at higher risk for periodontal issues. The findings underscore the importance of increased awareness and preventive dental care for pregnant individuals, as hormonal changes and other physiological factors during pregnancy may contribute to declining oral health. Enhanced dental health screenings and education tailored to this population are crucial for improving oral health outcomes during pregnancy and ensuring overall well-being.

This distribution indicates a potential statistical association between pregnancy status and oral health, as evidenced by a p-value of 0.1. The findings suggest that Pregnant individuals are more likely to experience Gingivitis,

Simple Distribution according periodontal Pocket Depth

Table 3 Distribution of simple according periodontal Pocket Depth

PDD	pregnant	Normal	Sig
Normal PPD	19(47%)	37(93%)	0.03
Periodontitis	21(53%)	3(7%)	
Total	40(100%)	40(100)	

In the pregnant group, 19 individuals (47%) were classified as having a normal probing depth (PPD), while 21 individuals (53%) were diagnosed with periodontitis. In contrast, the normal group shows a much higher proportion of individuals with normal PPD, where 37 participants (93%) were healthy and did not exhibit signs of periodontitis. Only 3 individuals (7%) in this group had periodontitis.

These findings reveal a significant difference in periodontal health between the two groups. Pregnant individuals show a higher prevalence of periodontitis (53%) compared to the normal group (7%). This suggests that pregnancy may be associated with an increased risk of developing periodontal disease, likely due to changes in hormones and immune response during this period.

Chapter four Discussion

The findings from this study indicate a concerning disparity in oral health between pregnant individuals and a control group of healthy non-pregnant individuals. Specifically, in BOP index the prevalence of gingivitis among pregnant individuals was found to be 86%, while only 20% of the control group exhibited similar symptoms. This suggests that pregnant individuals may be at a significantly higher risk for developing gingival diseases. These results align with existing literature that supports the link between pregnancy and exacerbated periodontal conditions. For instance, a study by Abarca et al. (2020) found that hormonal fluctuations during pregnancy, particularly increases in estrogen and progesterone, could affect gum health by causing increased vascular permeability and inflammatory responses. The heightened response may lead to changes in the oral microbiome, further contributing to periodontal tissue changes.

One of the primary factors contributing to the heightened prevalence of periodontal disease during pregnancy is the hormonal changes that occur. Increased levels of progesterone and estrogen during pregnancy can lead to alterations in the immune response, making gingival tissues more susceptible to inflammation. This phenomenon has been documented in several studies, including those by Hodge et al. (2018) and Gaffield et al. (2001), which illustrate how these hormonal shifts can exacerbate the inflammatory response to bacterial plaque.

the oral microbiota. Research has indicated that pregnant women may experience shifts in their oral microbiome, leading to an increase in pathogenic bacteria associated with periodontal disease. A study by Li et al. (2016) demonstrated that the diversity of oral microbiota changes during pregnancy, potentially contributing to increased susceptibility to infections.

In terms of probing depth (PPD), the observed 53% prevalence of periodontitis among pregnant individuals is notably higher than the 7% observed in the control group. This finding is consistent with research by Khader et al. (2017), which indicated that pregnancy is a significant risk factor for periodontitis due to compromised immune function and the body's adaptations to the hormonal environment. The conflicting immune response may predispose pregnant individuals to more aggressive forms of periodontal disease

Moreover, the present study highlights the importance of regular dental check-ups and preventive care for pregnant women. While the normal group demonstrated a strong correlation between good oral health and regular dental visits, the pregnant group's high incidence of gingivitis and periodontitis emphasizes the necessity of tailored dental health interventions. Programs focusing on education about oral hygiene and periodontal health for pregnant individuals may mitigate the risks associated with pregnancy-related periodontal diseases.

Overall, this study adds to a growing body of evidence suggesting that enhanced dental healthcare—such as increased screenings for oral health issues and targeted educational initiatives during prenatal care—is necessary to improve outcomes for pregnant individuals. Further research is needed to explore the long-term consequences of periodontal disease in pregnancy and the efficacy of various intervention strategies. Continued exploration in this field could lead to better-curated dental care guidelines for pregnant individuals, ultimately enhancing both maternal and fetal health.

Conclusion

The analysis of periodontal health in pregnant individuals compared to a control group reveals significant disparities in the prevalence of dental conditions. The findings show that pregnant individuals are at a considerably higher risk of gingivitis, with 86% demonstrating signs of the condition, contrasted with just 20% in the normal group. Additionally, when examining periodontal pocket depth, 53% of pregnant participants were diagnosed with periodontitis, while only 7% of the normal group exhibited this condition.

These results indicate a clear association between pregnancy status and increased incidence of periodontal issues, potentially influenced by hormonal changes and altered immune responses experienced during pregnancy. The p-value of 0.03 further underscores the statistical significance of these findings, highlighting the need for heightened awareness, preventive care, and education regarding oral health for pregnant individuals.

Overall, the data supports the necessity for enhanced dental screenings and tailored educational initiatives aimed at promoting better oral health outcomes for pregnant women. Addressing these issues is crucial for maintaining overall well-being during pregnancy and mitigating potential complications related to periodontal disease.

Recommendation

- Implement regular dental screenings for pregnant individuals to monitor periodontal health.
- Provide education on the importance of oral hygiene during pregnancy.
- Encourage the adoption of healthy dietary habits to support oral health.
- Promote awareness of the links between periodontal disease and pregnancy outcomes.
- Offer targeted interventions for those at high risk of developing periodontal issues.
- Develop community programs to facilitate access to dental care for pregnant women.
- Increase collaboration between obstetricians and dental professionals to ensure holistic care.
- Advocate for further research to explore the impact of periodontal health on pregnancy.

REFERENCES

(A)

- Abbas, M. J., & Reem, H. B. (2011). Prevalence of dental caries in children attended Pedodontic dental clinic Al Mustansiria Collage of Dentistry. *MUSTANSIRIA DENTAL JOURNAL*, 8.
- Abduallah, H. A. (2013). Experience of dental caries of adult patients in relation to the characteristic of dental visit and brushing behavior in Tikrit City. *Mustansiria Dental J.*, 10, 17-27.
- Abonayla, M. & Al-Waheb, A. (2020). The Effect of Socioeconomic Level on Dental Caries among Preschool Children in Baghdad City. *Indian Journal of Public Health Research & Development*, 11, 2338.
- Acharya, A., Kharadi, M., Dhavale, R., Deshmukh, V. L. & Sontakke, A. (2011). High salivary calcium level associated with periodontal disease in Indian subjects--a pilot study. *Oral health & preventive dentistry*, 9.
- Adair, P. & Ashcroft, A. (2007). Theory-based approaches to planning and evaluation of oral health education programmes. *Community Oral Health*.
- Addy, M. & Shellis, R. (2006). Interaction between attrition, abrasion and erosion in tooth wear. *Dental Erosion*, 20, 17-31.
- Adeniyi, A., Agbaje, O., Braimoh, M., Ogunbanjo, O., Modupe, S. & Olubunmi, O. (2011). A survey of the oral health knowledge and practices of pregnant women in a Nigerian teaching hospital. *African Journal of Reproductive Health*, 15, 14-19.
- Adriaens, L. M., Al-Essandri, R., Spörri, S., Lang, N. P. & Persson, G. R. (2009). Does pregnancy have an impact on the subgingival microbiota? *Journal of periodontology*, 80, 72-81.
- Agarwal, K., Mughal, M., Upadhyay, P., Berry, J., Mawer, E. & Puliyan, J. (2002). The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. *Archives of disease in childhood*, 87, 111-113.
- Ahmed, N. A., Åström, A. N., Skaug, N. & Petersen, P. E. (2007). Dental caries prevalence and risk factors among 12-year old schoolchildren from Baghdad, Iraq: a post-war survey. *International dental journal*, 57, 36-44.
- Al Awadi, Z. A. & Hussien, B. (2018). Oral Health Status among 9 years old school Children in Al-Diwaniyah City/Iraq. *Journal of baghdad college of dentistry*, 30, 92-97.
- Al-Abbasi, S. (2015). Nutritional status in relation to oral health condition and treatment needs among kindergarten children in Al-Basrah governorate/Iraq. *A master Thesis, College of Dentistry, University of Baghdad*.

- Alam, M. N., Mishra, P. & Chandrasekaran, S. (2012). Gender basis of periodontal diseases. *Indian J Basic Appl Med Res*, 2, 128-135.
- Al-atiyah, I. S. & Radhi, N. J. (2018). The Impact of Oral Health Knowledge, Attitude and Practices (KAP) of Kindergarten Teachers on Their Oral Condition in Al-Rusafa Sector/Baghdad-Iraq. *Journal of baghdad college of dentistry*, 30, 40-47.
- Al-Attas, S. A. (2007). The effect of socio-demographic factors on the oral health knowledge, attitude and behavior in a female population. *Saudi Dent J*, 19, 27-35.
- Al-Azawi, L. (2000). Oral health status and treatment needs among Iraqi five years old kindergarten children and fifteen years old students: a national survey. *Ph. D. thesis, College of Dentistry, University of Baghdad*.
- Al-Azawi, M. G. (2013). Tooth wear in relation to temporomandibular joint disorders and other selected risk factors among institutionalized older adults in Baghdad city/Iraq (Cross-sectional study). *A Master Thesis, College of Dentistry, University of Baghdad*.
- Al-Bayaty, F. H., Abdulla, M. A., Hassan, M. I. A., Masood, M. & Baharuddin, N. A. (2011). Interrelationship between antioxidant, C-reactive proteins, cotinine levels and periodontal diseases in smokers and non smokers. *Scientific Research and Essays*, 6, 2512-2518.
- Al-Dafaai, R. R. & Hoobi, N. M. (2019). Oral health knowledge and practices of women attending dental clinics of Baghdad University. *Journal of Baghdad College of Dentistry*, 31, 42-47.
- Al-Eissa, D. (2004). Oral health status of preschool children aged 3-5 years old and its relation to their socioeconomic status, and parent dental knowledge, behavior and attitude in two different social areas in Baghdad city. *A master thesis, College of Dentistry, University of Baghdad*.
- Al-Guboory, I. (1999). Evaluation of dental health, Knowledge, attitude and oral health status of pregnant women in Baghdad city. *A master thesis, College of Dentistry, University of Baghdad*.
- Al-Habashneh, R., Guthmiller, J. M., Levy, S., Johnson, G. K., Squier, C., Dawson, D. V. & Fang, Q. (2005). Factors related to utilization of dental services during pregnancy. *Journal of clinical periodontology*, 32, 815-821.
- Al-Hassnawi, A. K. & Al-Waheb, A. M. (2014). Socioeconomic status in relation to dental caries in Dewanyiah governorate among 12 years old school students. *Journal of Baghdad College of Dentistry*, 26, 131-134.
- Al-Hassnawy, A. (2013). Socioeconomic and nutritional status in relation to oral health status and treatment needs in Dewanyiah governorate among 12 years old school students. Master thesis submitted to the College of Dentistry, University of Baghdad.

- Al-Jehani, Y. A. (2014). Risk factors of periodontal disease: review of the literature. *International journal of dentistry*, 2014.
- Al-Khaza'ali, A. (2004). Oral health status and treatment needs among (6-12) school children in Irbid city (Jordan). *A master thesis, College of Dentistry, Baghdad University*.
- Al-Najjar, S. N. & Hussein, B. (2019). Oxidative status among a group of pregnant women in relation to gingival health condition. *Journal of Baghdad College of Dentistry*, 31.
- Al-Najjar, S. N. (2018). Selected salivary antioxidants and lipid peroxidation biomarker in relation to periodontal health condition among a group of pregnant women (A Comparative Study). *Maser Thesis. College of Dentistry, University of Baghdad*.
- Al-Obaidi, W. (1995). Oral health status in relation to nutritional status among kindergarten children in Baghdad, Iraq. *A master thesis, University of Baghdad*.
- Al-Obaidi, W. (2002). Dental caries experience among kindergarten's children in Baghdad Iraq. *Iraqi Dent J*, 29, 269-276.
- Al-Rahim, Y. A. & Hamid, M. A. (2008). The knowledge and practices of oral hygiene methods in a sample of college students; Baghdad. *MDJ*, 5, 88-92.
- Al-Rawi, N. A. (2019). Effect of ageing on selected salivary chemical compositions and dental caries experience among group of adults.
- Al-Sadam, N. (2013)a. Oral health status in relation to nutritional and social status in Karbala Governorate for primary school students aged 12 years old. *A Master thesis, College of Dentistry, University of Baghdad*.
- Al-Sadam, N. (2013)b. Oral health status in relation to nutritional and social status in Kerbal'a Governorate for primary school students aged 12 years old. *A master thesis, College of Dentistry, University of Baghdad*.
- Al-Sultani, H. F. F. (2013) b. Prevalence and Severity of Dental Caries, Periodontal Diseases and Dental Erosion among (20–40) Years Old Pregnant Women in Hilla city, Babylon governorate-Iraq. *health*, 5, 7.
- Al-Sultani, H. F. F. (2013)a. Prevalence and Severity of Dental Caries, Periodontal Diseases and Dental Erosion among (20–40) Years Old Pregnant Women in Hilla city, Babylon governorate-Iraq. *Medical Journal of Babylon*, 10, 413-420.
- Al-Tamimi, H. K. & Al-Rawi, N. A. (2018). Age-Related Changes with Selected Salivary Physical Properties and Caries Experience among Healthy Adult Men. *International Journal of Medical Research & Health Sciences*, 7, 52-58.
- Al-Zahawi, S. M. (2011). The association between some salivary factors and dental caries in group of school children and adolescents in Erbil city. *Zanco Journal of Medical Sciences (Zanco J Med Sci)*, 15, 64-70.

- Al-Zaidi, W. (2007). *Oral immune proteins and salivary constituents in relation to oral health status among pregnant women*. Ph. D. thesis, College of Dentistry, University of Baghdad.
- Amar, S. & Chung, K. M. (1994). Influence of hormonal variation on the periodontium in women. *Periodontology 2000*, 6, 79-87.
- Amar, S. & Han, X. (2003). The impact of periodontal infection on systemic diseases. *Medical Science Monitor*, 9, RA291-RA299.
- American Dental Association, 2011. Oral health during pregnancy. *J Am Dent Assoc*, 142, p.574.
- Anand, N., Chandrasekaran, S. & Rajput, N. S. (2013). Vitamin D and periodontal health: Current concepts. *Journal of Indian Society of Periodontology*, 17, 302.
- Armitage, G. C. (2004). Periodontal diagnoses and classification of periodontal diseases. *Periodontology 2000*, 34, 9-21.
- Arnadottir I B, Holbrook W P, Eggertsson H, Gudmundsdottir H, Jonsson S H, Gudlaugsson J O, Saemundsson S R, Eliasson S T, Agustsdottir H. (2010). Prevalence of dental erosion in children: a national survey. *Community Dent Oral Epidemiol*, 38: 521-526
- Attaullah, M. K. & Khan, A. A. (2010). Oral health related knowledge, attitude and practices among patients—a study, Pak. *Oral Dent. J.*, 30, 186-191.
- attended pedodontic dental clinic Al Mustansiria Collage of Dentistry. *J Must Coll Dent*, 8(3), 276-280.
- Attin, T. & H, E. (2005). Tooth brushing and oral health: how frequently and when should tooth brushing be performed? *Oral health & preventive dentistry*, 3.
- Awn, A. P. D. B. H. & Yas, A. P. D. B. A. (2020). Salivary Protein Carbonyl Level in Relation to Gingival Health Status among a Group of Iraqi Pregnant Women. *Annals of Tropical Medicine and Health*, 23, 23-1129.
- Aziz, B. A. B. (2014). *Salivary Tumor Marker CA15-3 and Selected Elements in Relation to Oral Health Status among a Group of Iraqi Breast Cancer Women*. College of Dentistry Salivary Tumor Marker CA15-3 and Selected Elements.

(B)

- Badovinac, A., Božić, D., Vučinac, I., Vešligaj, J., Vražić, D. & Plančak, D. (2013). Oral health attitudes and behavior of dental students at the University of Zagreb, Croatia. *Journal of dental education*, 77, 1171-1178.
- BORON, WF. & BOULPAEP, EL. 2012. *Medical Physiology*, 2e Updated Edition E-Book: with STUDENT CONSULT Online Access. Elsevier Health Sciences.

- Bakhshi, M., Sabet, M. S., Hashemi, E. S., Bakhtiari, S., Tofangchiha, M., Marhabi, S. A. & Al-Irezaei, S. (2012). Evaluation of biochemical changes in unstimulated salivary, calcium, phosphorous and total protein during pregnancy. *African Journal of Biotechnology*, 11, 2078-2083.
- Bakhshi, M., Tofangchiha, M., Bakhtiari, S. & Ahadiyan, T. (2019). Oral and dental care during pregnancy: A survey of knowledge and practice in 380 Iranian gynaecologists. *Journal of International Oral Health*, 11, 21.
- Bamanikar, S. & Kee, L. K. (2013). Knowledge, attitude and practice of oral and dental healthcare in pregnant women. *Oman medical journal*, 28, 288.
- Baydaa Hussein, B. (2019). Oxidative status among a group of pregnant women in relation to gingival health condition.
- Boggess, K. A. (2008). Maternal oral health in pregnancy. *Obstetrics & gynecology*, 111, 976-986.
- Bojar, I., Bilinski, P., Boyle, P., Zatonski, W., Marcinkowski, J. T. & Wojtyla, A. (2011). Prevention of female reproductive system cancer among rural and urban Polish pregnant women. *Annals of Agricultural and Environmental Medicine*, 18.
- Bolek-Berquist, J., Elliott, M. E., Gangnon, R. E., Gemar, D., Engelke, J., Lawrence, S. J. & Hansen, K. E. (2009). Use of a questionnaire to assess vitamin D status in young adults. *Public health nutrition*, 12, 236-243.
- Bolisani, E. & Bratianu, C. (2018). The elusive definition of knowledge. *Emergent knowledge strategies*. Springer.
- Borrell, L. N. & Papapanou, P. N. (2005). Analytical epidemiology of periodontitis. *Journal of clinical periodontology*, 32, 132-158.
- Botelho, J., Machado, V., Proenca, L., Delgado, A. S. & Mendes, J. J. (2020). Vitamin D deficiency and oral health: A comprehensive review. *Nutrients*, 12, 1471.
- Bowyer, L., Catling-Paull, C., Diamond, T., Homer, C., Davis, G. & Craig, M. E. (2009). Vitamin D, PTH and calcium levels in pregnant women and their neonates. *Clinical endocrinology*, 70, 372-377.
- Boyle, V. T., Thorstensen, E. B., Mourath, D., Jones, M. B., Mccowan, L. M., Kenny, L. C. & Baker, P. N. (2016). The relationship between 25-hydroxyvitamin D concentration in early pregnancy and pregnancy outcomes in a large, prospective cohort. *British Journal of Nutrition*, 116, 1409-1415.
- Bretz, W. A., Corby, P., Schork, N. & Hart, T. C. (2003). Evidence of a contribution of genetic factors to dental caries risk. *Journal of Evidence Based Dental Practice*, 3, 185-189.

(C)

- Cannell, J. J., Vieth, R., Willett, W., Zasloff, M., Hathcock, J. N., White, J. H., Tanumihardjo, S. A., Larson-Meyer, D. E., Bischoff-Ferrari, H. A. & Lamberg-Allardt, C. J. (2008)b. Cod liver oil, vitamin A toxicity,

frequent respiratory infections, and the vitamin D deficiency epidemic. *Annals of Otology, Rhinology & Laryngology*, 117, 864-870.

- Cannell, J., Hollis, B., Zasloff, M. & Heaney, R. (2008)a. Diagnosis and treatment of vitamin D deficiency. *Expert opinion on pharmacotherapy*, 9, 107-118.
- Cappelli, D. & Mobley, C. (2008). Prevention in Clinical Oral Health Care; Mosby Elsevier: St. Louis, MO, USA.
- Carl, D. L., Roux, G. & Matacale, R. (2000). Exploring dental hygiene and perinatal outcomes: Oral health implications for pregnancy and early childhood. *Nursing for Women's Health*, 4, 22-27.
- Carranza, F. (2019). Newman And Carranza's Clinical Periodontology. China: WB Saunders Elsevier.
- Carrillo-de-Alboroz, A., Figueiro, E., Herrera, D. & Bascones-Martínez, A. (2010). Gingival changes during pregnancy: II. Influence of hormonal variations on the subgingival biofilm. *Journal of clinical periodontology*, 37, 230-240.
- Castagnola, M., Picciotti, P. M., Messana, I., Fanali, C., Fiorita, A., Cabras, T., Calo, L., Pisano, E., Passali, G. C. & Iavarone, F. (2011). Potential applications of human saliva as diagnostic fluid. *Acta Otorhinolaryngologica Italica*, 31, 347.
- Chaitra, T., Wagh, S., Sultan, S., Chaudhary, S., Manuja, N. & Sinha, A. B. (2018). Knowledge, attitude and practice of oral health and adverse pregnancy outcomes among rural and urban pregnant women of Moradabad, Uttar Pradesh, India. *Journal of Interdisciplinary Dentistry*, 8, 5.
- Champagne, C., Madianos, P. N., Lieff, S., Murtha, A., Beck, J. & Offenbacher, S. (2000). Periodontal medicine: emerging concepts in pregnancy outcomes. *Journal of the International Academy of Periodontology*, 2, 9-13.
- Charles, C. A., McGuire, J., Qaqish, J. & Amini, P. (2013). Increasing antiplaque/antigingivitis efficacy of an essential oil mouthrinse over time: an in vivo study. *General dentistry*, 61, 23-28.
- Chestnutt, I. G. G., J. (2007). Clinical dentistry. 3rd ed. Churchill Livingstone Elsevier, 2007.
- Cheung, K.L. & Lafayette, R.A. (2013). Renal physiology of pregnancy. *Advances in chronic kidney disease*; 20(3):209-214.
- Chickanna, R., Prabhuji, M.L.V. and Nagarjuna, M.S.V., (2015). Host-bacterial interplay in periodontal disease. *Journal of the International Clinical Dental Research Organization*, 7(1), p.44.
- Choi, M. (2010). Saliva diagnostics integrate dentistry into general and preventive health care. *Int J Prosthodont*, 23, 189.
- Chortatos, A., Haugen, M., Iversen, P.O., Vikanes, Å., Magnus, P. and Veierød, M.B., (2013). Nausea and vomiting in pregnancy: associations with maternal gestational diet and lifestyle factors in the Norwegian M

other and C hild C ohort S tudy. *BJOG: An International Journal of Obstetrics & Gynaecology*, 120(13), pp.1642-1653

- Chour, G. V. & Chour, R. G. (2014). Diet counselling—A primordial level of prevention of dental caries. *IOSR-JDMS*, 13, 64-70.
- Christensen, L. B., Jeppe-Jensen, D. & Petersen, P. E. (2003). Self-reported gingival conditions and self-care in the oral health of Danish women during pregnancy. *Journal of clinical periodontology*, 30, 949-953.
- Clark, SM. Costantine, MM. 7 Hankins, GD. (2012). Review of NVP and HG and early pharmacotherapeutic intervention. *Obstetrics and Gynecology International*; 2012:8.
- Clarys, P., Deliens, T., Huybrechts, I., Deriemaeker, P., Vanaelst, B., De keyzer, W., Hebbelinck, M. & Mullie, P. (2014). Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. *Nutrients*, 6, 1318-1332.
- Cochran, D. L. (2008). Inflammation and bone loss in periodontal disease. *J Periodontol*, 79, 1569-76.
- Cohen, L., Schaeffer, M., Davideau, J. L., Tenenbaum, H. & Huck, O. (2015). Obstetric knowledge, attitude, and behavior concerning periodontal diseases and treatment needs in pregnancy: Influencing factors in France. *Journal of periodontology*, 86, 398-405.
- Conrado, C. A., Maciel, S. M. & Oliveira, M. R. (2004). A school-based oral health educational program: the experience of Maringa-PR, Brazil. *Journal of Applied Oral Science*, 12, 27-33.
- Costa, S. M., Martins, C. C., Bonfim, M. D. L. C., Zina, L. G., Paiva, S. M., Pordeus, I. A. & Abreu, M. H. (2012). A systematic review of socioeconomic indicators and dental caries in adults. *International journal of environmental research and public health*, 9, 3540-3574.

(D)

- D'ortenzio, L., Kahlon, B., Peacock, T., Salahuddin, H. & Brickley, M. (2018). The rachitic tooth: Refining the use of interglobular dentine in diagnosing vitamin D deficiency. *International journal of paleopathology*, 22, 101-108.
- Daba, G., Beyene, F., Fekadu, H. & Garoma, W. (2013). Assessment of knowledge of pregnant mothers on maternal nutrition and associated factors in Guto Gida Woreda, East Wollega Zone, Ethiopia. *Journal of Nutrition & Food Sciences*, 3, 1.
- Daly, R. W. R., Bakar, W., Husein, A., Ismail, N. M. & Amaechi, B. T. (2010). The study of tooth wear patterns and their associated aetiologies in adults in Kelantan, Malaysia. *Arch Orofac Sci*, 5, 47-52.
- Dawson-Hughes, B., Mithal, A., Bonjour, J.-P., Boonen, S., Burckhardt, P., Fuleihan, G.-H., Josse, R., Lips, P., Morales-Torres, J. & Yoshimura,

N. (2010). IOF position statement: vitamin D recommendations for older adults. *Osteoporosis international*, 21, 1151-1154.

- De almeida, P. D. V., Gregio, A., Machado, M., De lima, A. & Azevedo, L. R. (2008). Saliva composition and functions: a comprehensive review. *J contemp dent pract*, 9, 72-80.
- Dhoble, A. (2008). Pedodontics (Questions&Answers). *Bangalore New Delhi*.
- Dietrich, T., Joshipura, K. J., Dawson-Hughes, B. & Bischoff-Ferrari, H. C. (2004). Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. *The American journal of clinical nutrition*, 80, 108-113.
- Dodds, M., Roland, S., Edgar, M. & Thornhill, M. (2015). Saliva A review of its role in maintaining oral health and preventing dental disease. *Bdj Team*, 2, 15123.
- Ds, M. A. B. (2011). Salivary sex hormones & its relation to periodontal status among pregnant & non pregnant women. *MUSTANSIRIA DENTAL JOURNAL*, 8.
- Dumitrescu, A. L., Wagle, M., Dogaru, B. C. & Manolescu, B. (2011). Modeling the theory of planned behavior for intention to improve oral health behaviors: the impact of attitudes, knowledge, and current behavior. *Journal of oral science*, 53, 369-377.
- Dusso AS, Brown AJ & E, S. (2005). Vitamin D. *Am J Physiol* 289: F8-28.

(E)

- Edwina A. , K. M. (2005). Essentials of Dental Caries. 3rd ed. Oxford. 123-166.
- Eggemoen, Å. R., Jenum, A. K., Mdala, I., Knutsen, K. V., Lagerløv, P. & Sletner, L. (2017). Vitamin D levels during pregnancy and associations with birth weight and body composition of the newborn: a longitudinal multiethnic population-based study. *British Journal of Nutrition*, 117, 985-993.
- Eisenburger, M. & Addy, M. (2002). Erosion and attrition of human enamel in vitro part I: interaction effects. *Journal of Dentistry*, 30, 341-347.
- Eke, P. I., Timothe, P., Presson, S. M. & Malvitz, D. M. (2005). Peer reviewed: Dental Care Use Among Pregnant Women in the United States Reported in 1999 and 2002. *Preventing chronic disease*, 2.
- El-Samarrai, S. 1989. Oral health status and treatment needs among preschool children in Baghdad, Iraq. *A master thesis*, College of Dentistry, University of Baghdad.

(F)

- Farooqi, F. A., Khabeer, A., Moheet, I. A., Khan, S. Q. & Farooq, I. (2015). Prevalence of dental caries in primary and permanent teeth and

its relation with tooth brushing habits among schoolchildren in Eastern Saudi Arabia. *Saudi medical journal*, 36, 737

- Featherstone, J. & Lussi, A. (2006). Understanding the chemistry of dental erosion. *Dental erosion*. Karger Publishers.
- Featherstone, J. D. (2008). Dental caries: a dynamic disease process. *australian dental journal*, 53, 286-291.
- Fejerskov, O. (2004). Changing paradigms in concepts on dental caries: consequences for oral health care. *Caries research*, 38, 182-191.
- Foster, B. L., Nociti JR, F. H. & Somerman, M. J. (2014). The rachitic tooth. *Endocrine reviews*, 35, 1-34.
- Friedman, L. A., Mackler, I. G., Hoggard, G. J. & French, C. I. (1976). A comparison of perceived and actual dental needs of a select group of children in Texas. *Community dentistry and oral epidemiology*, 4, 89-93.

(G)

- Gaffield, M. L., Gilbert, B. J. C., Malvitz, D. M. & Romaguera, R. (2001). Oral health during pregnancy: an analysis of information collected by the pregnancy risk assessment monitoring system. *The Journal of the American Dental Association*, 132, 1009-1016.
- Gao, X., Jiang, S., Koh, D. & Hsu, C. Y. S. (2016). Salivary biomarkers for dental caries. *Periodontology 2000*, 70, 128-141.
- Garcia, R. I., Henshaw, M. M. & Krall, E. A. (2001). Relationship between periodontal disease and systemic health. *Periodontol 2000*, 25, 21-36.
- Gaszyńska, E., Klepacz-Szewczyk, J., Trafalska, E., Garus-Pakowska, D. & Szatko, F. (2015). Dental awareness and oral health of pregnant women in Poland. *International journal of occupational medicine and environmental health*, 28, 603-611.
- George, A., Dahlen, H. G., Blinkhorn, A., Ajwani, S., Bhole, S., Ellis, S., Yeo, A., Elcombe, E. & Johnson, M. (2018). Evaluation of a midwifery initiated oral health-dental service program to improve oral health and birth outcomes for pregnant women: A multi-centre randomised controlled trial. *International journal of nursing studies*, 82, 49-57.
- George, A., Dahlen, H. G., Reath, J., Ajwani, S., Bhole, S., Korda, A., Chok, H. N., Miranda, C., Villarosa, A. & Johnson, M. (2016). What do antenatal care providers understand and do about oral health care during pregnancy: a cross-sectional survey in New South Wales, Australia. *BMC pregnancy and childbirth*, 16, 1-10.
- George, A., Johnson, M., Blinkhorn, A., Ajwani, S., Bhole, S., Yeo, A. & Ellis, S. (2013). The oral health status, practices and knowledge of pregnant women in south-western Sydney. *Australian dental journal*, 58, 26-33

- George, A., Johnson, M., Blinkhorn, A., Ellis, S., Bhole, S. & Ajwani, S. (2010). Promoting oral health during pregnancy: current evidence and implications for Australian midwives. *Journal of Clinical Nursing*, 19, 3324-3333.
- Giovannucci, E., Liu, Y., Hollis, B. W. & Rimm, E. B. (2008). 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. *Archives of internal medicine*, 168, 1174-1180.
- Giovannucci, E., Liu, Y., Rimm, E. B., Hollis, B. W., Fuchs, C. S., Stampfer, M. J. & Willett, W. C. (2006). Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. *Journal of the National Cancer Institute*, 98, 451-459.
- Golkari, A., Khosropanah, H. & Saadati, F. (2013). Evaluation of knowledge and practice behaviours of a group of Iranian obstetricians, general practitioners, and midwives, regarding periodontal disease and its effect on the pregnancy outcome. *Journal of public health research*, 2.
- Gombart, A. F. (2009). The vitamin D-antimicrobial peptide pathway and its role in protection against infection. *Future microbiology*, 4, 1151-1165.
- Gorham, E. D., Garland, C. F., Garland, F. C., Grant, W. B., Mohr, S. B., Lipkin, M., Newmark, H. L., Giovannucci, E., Wei, M. & Holick, M. F. (2007). Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. *American journal of preventive medicine*, 32, 210-216.
- Goswami, R., Gupta, N., Goswami, D., Marwaha, R. K., Tandon, N. & Kochupillai, N. (2000). Prevalence and significance of low 25-hydroxyvitamin D concentrations in healthy subjects in Delhi. *The American journal of clinical nutrition*, 72, 472-475.
- Greabu, M., Battino, M., Mohora, M., Totan, A., Didilescu, A., Spinu, T., Totan, C., Miricescu, D. & Radulescu, R. (2009). Saliva--a diagnostic window to the body, both in health and in disease. *Journal of medicine and life*, 2, 124-132.
- Gropper, S. S. & Smith, J. L. (2012). *Advanced nutrition and human metabolism*, Cengage Learning.
- Guidozzi, F., MacLennan, M., Graham, K. & Jooste, C. (1992). Salivary calcium, magnesium, phosphate, chloride, sodium and potassium in pregnancy and labour. *South African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde*, 81, 152-154.
- Gunay, H., Goepel, K., Stock, K. & Schneller, T. (1991). Position of health education knowledge concerning pregnancy. *Oral-prophylaxe*, 13, 4-7.
- Gundala, R. & Chava, V. K. (2010). Effect of lifestyle, education and socioeconomic status on periodontal health. *Contemporary clinical dentistry*, 1, 23.

- Gupta, P., Gupta, N. & Singh, H. P. (2014). Prevalence of dental caries in relation to body mass index, daily sugar intake, and oral hygiene status in 12-year-old school children in Mathura city: A pilot study. *International journal of pediatrics*, 2014.
- Gupta, P., Gupta, N., Pawar, A. P., Birajdar, S. S., Natt, A. S. & Singh, H. P. (2013). Role of sugar and sugar substitutes in dental caries: a review. *International Scholarly Research Notices*, 2013.
- Gupta, S., Jain, A., Mohan, S., Bhaskar, N. & Walia, P. K. (2015). Comparative evaluation of oral health knowledge, practices and attitude of pregnant and non-pregnant women, and their awareness regarding adverse pregnancy outcomes. *Journal of clinical and diagnostic research: JCDR*, 9, ZC26.
- Gürsoy, M., Haraldsson, G., Hyvönen, M., Sorsa, T., Pajukanta, R. and Könönen, E., 2009. Does the frequency of *Prevotella intermedia* increase during pregnancy?. *Oral Microbiology and Immunology*, 24(4), pp.299-303.
- Gürsoy, M., Pajukanta, R., Sorsa, T. & Könönen, E. (2008). Clinical changes in periodontium during pregnancy and post-partum. *Journal of clinical periodontology*, 35, 576-583.
- Guy, C. (2012). Role of saliva in the oral processing. *Food Oral Processing*. Oxford: Garsington Road.

(H)

- Haas, D. A. (2002). An update on local anesthetics in dentistry. *Journal-Canadian Dental Association*, 68, 546-552.
- Hada, D. S. (2021). Periodontium in females - A review. IP International Journal of Periodontology and Implantology. Official Publication of Khyati Education And Research Foundation. Email: dr_dshada@yahoo.com.
- Hacker, NF. Gambone, JC. & Hobel, CJ. (2015). Hacker & moore's essentials of obstetrics and gynecology. Elsevier Health Sciences.
- Hall, JE. 2015. Guyton and hall textbook of medical Physiology. 13th Edition. Philadelphia: Chapter 82.
- Halpern, L. R. & Kaste, L. M. (2013). *Evidence-Based Women's Oral Health, An Issue of Dental Clinics, E-Book*, Elsevier Health Sciences.
- Harman, G. (2015). *Thought*, Princeton University Press.
- Hasan, Z. S. & Diab, B. S. (2010). The effect of nutritional status on dental caries in relation to salivary flow rate, pH, inorganic phosphorus, calcium, copper and lead among five years old kindergarten children. *Journal of baghdad college of dentistry*, 22.
- Hassan, L. S. (2013). *Correlation between periodontal health status and some salivary parameters in pregnancy*. University of Baghdad.
- Hassan, R. & Abaas, M. (2011). Prevalence of dental caries in children
- Hassan, Z. S. & Qasim, A. A. (2008). Oral hygiene condition among five years old Kindergarten Children in relation to level of parent education in Baghdad city Iraq. *Journal of the Faculty of Medicine Baghdad*, 50, 440-444.
- Haswell, S. J. 1991. Atomic absorption spectrometry.

Helmerhorst, E. & Oppenheim, F. (2007). Saliva: a dynamic proteome. *Journal of dental research*, 86, 680-693.

- Helmi, M. F., Huang, H., Goodson, J. M., Hasturk, H., Tavares, M. & Natto, Z. S. (2019). Prevalence of periodontitis and alveolar bone loss in a patient population at Harvard School of Dental Medicine. *BMC Oral Health*, 19, 1-11.
- Hildebolt, C. F., Pilgram, T. K., Dotson, M., Armamento-Villareal, R., Hauser, J., Cohen, S. & Civitelli, R. (2004). Estrogen and/or calcium plus vitamin D increase mandibular bone mass. *Journal of periodontology*, 75, 811-816.
- Hiremath, S. (2011). *Textbook of preventive and community dentistry*, Elsevier India.
- Hu, X. P., Li, Z. Q., Zhou, J. Y., Yu, Z. H., Zhang, J. M. & Guo, M. L. (2015). Analysis of the association between polymorphisms in the vitamin D receptor (VDR) gene and dental caries in a Chinese population. *Genet Mol Res*, 14, 11631-8.
- Hugoson, A., Laurell, L. & Lundgren, D. (1992). Frequency distribution of individuals aged 20–70 years according to severity of periodontal disease experience in 1973 and 1983. *Journal of clinical periodontology*, 19, 227-232.
- Hussein, Z. (2014). Dental caries and treatment needs among 16-18 years old high school girls, in relation to oral cleanliness, Parent's education and nutritional status. *Al-Mussayb city/Babylon governorate/Iraq. Master thesis, College of Dentistry, University of Baghdad*.

(I)

- Ibrahim, H., Mudawi, A. & Ghadour, I. (2016). Oral health status, knowledge and practice among pregnant women attending Omdurman maternity hospital, Sudan. *EMHJ-Eastern Mediterranean Health Journal*, 22, 802-809.
- Iheozor-Ejiofor, Z., Middleton, P., Esposito, M. & Glenny, A. M. (2017). Treating periodontal disease for preventing adverse birth outcomes in pregnant women. *Cochrane Database Syst Rev*, 6, Cd005297.
- Imfeld, T. (1996). Dental erosion. Definition, classification and links. *European journal of oral sciences*, 104, 151-155.
- Internationale, F. D. (1987). The impact of changing disease trends on dental education and practice. *Int Dent* 30, 127-130.
- Issa, Z. (2011). *Oral health status among groups of pregnant and lactating women in relation to salivary constituents and physical properties*. Master Thesis submitted to the College of Dentistry, University of Baghdad.

(J)

- Jabber, W. (2008). Oral health status in relation to nutritional status among kindergarten children 4-5 years in Al-Kut city/Iraq. *A master thesis, College of Dentistry, University of Baghdad*.
- Jafri, Z., Bhardwaj, A., Sawai, M. & Sultan, N. (2015). Influence of female sex hormones on periodontium: A case series. *Journal of natural science, biology, and medicine*, 6, S146.
- Jagelavičienė, E., Vaitkevičienė, I., Šilingaitė, D., Šinkūnaitė, E. & Daugėlaitė, G. (2018). The relationship between vitamin D and periodontal pathology. *Medicina*, 54, 45.
- Jeffcoat, M. K., Geurs, N. C., Reddy, M. S., Cliver, S. P., Goldenberg, R. L. & Hauth, J. C. (2001). Periodontal infection and preterm birth: results of a prospective study. *The Journal of the American Dental Association*, 132, 875-880.
- Jennifer, R.N. and Niebyl, M.D., (2010). Nausea and vomiting in pregnancy. *N Engl J Med*, 363(16.1544).
- Jevtić, M., Pantelinac, J., Jovanović-Ilić, T., Petrović, V., Grgić, O. & Blažić, L. (2015). The role of nutrition in caries prevention and maintenance of oral health during pregnancy. *Medicinski pregled*, 68, 387-393.
- Joachim, K. & Marek, M. (2007). *Calcium: A Matter of Life or Death, Volume 41: New Comprehensive Biochemistry*. Elsevier Scieded.
- Jones, G., (2018). The discovery and synthesis of the nutritional factor vitamin D. *International journal of paleopathology*, 23, pp.96-99.

(K)

- Kadoum, N. A. & Salih, B. A. (2014). Selected salivary constituents, physical properties and nutritional status in relation to dental caries among 4-5 yearâ€™s old children (Comparative study). *Journal of Baghdad College of Dentistry*, 26, 150-156.
- Kaifu, Y., Kasai, K., Townsend, G. C. & Richards, L. C. (2003). Tooth wear and the —designl of the human dentition: a perspective from evolutionary medicine. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, 122, 47-61.
- Kaliyaperumal, K. (2004). Guideline for conducting a knowledge, attitude and practice (KAP) study. *AECS illumination*, 4, 7-9.
- Kamate, W. I., Vibhute, N. A. & Baad, R. K. (2017). Estimation of DMFT, salivary streptococcus mutans count, flow rate, pH, and salivary total calcium content in pregnant and non-pregnant women: a prospective study. *Journal of clinical and diagnostic research: JCDR*, 11, ZC147.

- Kamate, W. I., Vibhute, N., Baad, R., Belgaumi, U., Kadashetti, V. & Bommanavar, S. (2019). Effect of socioeconomic status on dental caries during pregnancy. *Journal of family medicine and primary care*, 8, 1976.
- Karnik, A. A., Pagare, S. S., Krishnamurthy, V., Vahanwala, S. P. & Waghmare, M. (2015). Determination of salivary flow rate, pH, and dental caries during pregnancy: A study. *Journal of Indian Academy of Oral Medicine and Radiology*, 27, 372.
- Karunachandra, N. N., Perera, I. & Fernando, G. (2012). Oral health status during pregnancy: rural-urban comparisons of oral disease burden among antenatal women in Sri Lanka.
- Katz, J., Orchard, A. B., Ortega, J., Lamont, R. J. & Bimstein, E. (2006). Oral health and preterm delivery education: a new role for the pediatric dentist. *Pediatric dentistry*, 28, 494-498.
- Kawashita, Y., Kitamura, M. & Saito, T. (2011). Early childhood caries. *International journal of dentistry*, 2011.
- Khader, Y. S., Rice, J. C. & Lefante, J. J. (2003). Factors associated with periodontal diseases in a dental teaching clinic population in northern Jordan. *Journal of periodontology*, 74, 1610-1617.
- Khadilkar, S. S. (2013). The emerging role of vitamin D3 in women's health. Springer.
- Khalaf, S. A., Osman, S. R., Abbas, A. M. & Ismail, T. (2018). Knowledge, attitude and practice of oral healthcare among pregnant women in Assiut, Egypt. *Int J Community Med Public Health*, 5, 890-900
- Khan, A. A., Jain, S. K. & Shrivastav, A. (2008). Prevalence of dental caries among the population of Gwalior (India) in relation of different associated factors. *European journal of dentistry*, 2, 081-085.
- Khan, G. J., Mehmood, R. & Marwat, F. M. (2005). Secretion of calcium in the saliva of long-term tobacco users. *Journal of Ayub Medical College Abbottabad*, 17.
- Kidd, E. A. & Fejerskov, O. (2016). *Essentials of dental caries*, Oxford University Press.
- Kilkkinen, A., Knekt, P., Aro, A., Rissanen, H., Marniemi, J., Heliövaara, M., Impivaara, O. & Reunanen, A. (2009). Vitamin D status and the risk of cardiovascular disease death. *American journal of epidemiology*, 170, 1032-1039.
- Kornman, K. S. & Loesche, W. J. (2008). The subgingival microbial flora during pregnancy. *Journal of periodontal research*, 15, 111-122.
- Kumar, J. & Samelson, R. (2006). Oral health care during pregnancy and early childhood: practice guidelines. *New York, NY: New York State Department of Health*.
- Kurien, S., Kattimani, V. S., Sriram, R. R., Sriram, S. K., Bhupathi, A., Bodduru, R. R. & Patil, N. N. (2013). Management of pregnant patient in dentistry. *Journal of international oral health: JIOH*, 5, 88.

- Lafaurie, G. (2011). Gingival tissue and pregnancy. *Gingival Diseases—Their Aetiology, Prevention and Treatment*. InTech, 101-20.
- Laine, M. A. (2002). Effect of pregnancy on periodontal and dental health. *Acta Odontologica Scandinavica*, 60, 257-264.
- Lammi-Keefe, CJ. Couch, SC. Philipson, EH. (2008). Handbook of nutrition and pregnancy. Nutrition and health. Totowa, N.J: Humana Press:28.
- Lanham-New, S.A. and Wilson, L.R., (2016). Vitamin D—has the new dawn for dietary recommendations arrived?. *Nutrition Bulletin*, 41(1), pp.2-5.
- Lateef AT, S., Musa, O., Kamaldeen, A., Buhari, A. & Saka, A. (2012). Determinants of oral hygiene status among junior secondary school students in Ilorin West local government area of Nigeria. *IOSR J Pharm Biol Sci*, 1, 44-48.
- Launiala, A. (2009). How much can a KAP survey tell us about people's knowledge, attitudes and practices? Some observations from medical anthropology research on malaria in pregnancy in Malawi. *Anthropology Matters*, 11.
- León, G. R., García, R. G. & Guerrero, R. R. (2002). Pregnancy and dental caries correlation. *Revista de la Asociación Dental Mexicana*, 59, 5-9.
- Lewis, W. & Milgrom, P. (2003). Pediatrics in Review. *Journal of the American Academy of Pediatrics*, 24, 327-8.
- Liu, P. T., Stenger, S., LI, H., Wenzel, L., Tan, B. H., Krutzik, S. R., Ochoa, M. T., Schauber, J., Wu, K. & Meinken, C. (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. *Science*, 311, 1770-1773.
- Löe, H. & Silness, J. 1963. Periodontal disease in pregnancy I. Prevalence and severity. *Acta odontologica scandinavica*, 21, 533-551.
- Löe, H. (1967). The gingival index, the plaque index and the retention index systems. *The Journal of Periodontology*, 38, 610-616.
- López, R., Smith, P. C., Göstemeyer, G. & Schwendicke, F. (2017). Ageing, dental caries and periodontal diseases. *Journal of clinical periodontology*, 44, S145-S152.
- López-Marcos, J. F., García-Valle, S. & García-Iglesias, A. A. (2005). Periodontal aspects in menopausal women undergoing hormone replacement therapy. *Medicina oral, patología oral y cirugía bucal*, 10, 132-141.
- Luan, W.-M., Baelum, V., Fejerskov, O. & Chen, X. (2000). Ten-year incidence of dental caries in adult and elderly Chinese. *Caries research*, 34, 205-213.

- Lussi, A. (2006). *Dental erosion: from diagnosis to therapy*, Karger Medical and Scientific Publishers.

(M)

- Mahmood, A. A. (2017). Comparison Of Oral Health Status And Behavior between First And Fifth Years Of Al-Mustansiriyah Dental Students. *Journal of Baghdad College of Dentistry*, 29, 71-77
- Malele-Kolisa, Y. (2009). *Knowledge, attitudes and practices of caregivers about oral lesions in HIV positive patients in NGOs/CBOs in Region, Johannesburg, Gauteng*.
- Mangskau, K. & Arrindell, B. (1996). Pregnancy and oral health: utilization of the oral health care system by pregnant women in North Dakota. *Northwest Dentistry*, 75, 23-28.
- Marla, V., Srii, R., Roy, D.K. and Ajmera, H., (2018). The importance of oral health during pregnancy: A review. *MedicalExpress*, 5.
- Martin d, M. P., Rodwell V (2000). Harper's Review of Biochemistry. 25th ed. Lang Medical Publication, California,.
- Marya, A. (2011). Textbook of public health dentistry.1st ed. Jaypee Brothers, New Delhi.
- Mascarenhas, P., Gapski, R., Al-Shammari, K. & Wang, H. L. (2003). Influence of sex hormones on the periodontium. *Journal of clinical periodontology*, 30, 671-681.
- Masthan, K. (2011). *Textbook Pediatric Oral Pathology*, Jaypee.
- Mathur, M. R., Tsakos, G., Millett, C., Arora, M. & Watt, R. (2014). Socioeconomic inequalities in dental caries and their determinants in adolescents in New Delhi, India. *BMJ open*, 4, e006391.
- Mealey, B. L. & Moritz, A. J. (2003). Hormonal influences: effects of diabetes mellitus and endogenous female sex steroid hormones on the periodontium. *Periodontology 2000*, 32, 59-81.
- Meusel, D. R., Ramacciato, J. C., Motta, R. H., Júnior, R. B. B. & Flório, F. M. (2015). Impact of the severity of chronic periodontal disease on quality of life. *Journal of oral science*, 57, 87-94.
- Miletich, I. (2010). Introduction to salivary glands: structure, function and embryonic development. *Salivary Glands*, 14, 1-20.
- Miley, D. D., Garcia, M. N., Hildebolt, C. F., Shannon, W. D., Couture, R. A., Anderson Spearie, C. L., Dixon, D. A., Langenwalter, E. M., Mueller, C. & Civitelli, R. (2009). Cross-sectional study of vitamin D and calcium supplementation effects on chronic periodontitis. *Journal of periodontology*, 80, 1433-1439.
- Miliku, K., Vinkhuyzen, A., Blanken, L. M., McGrath, J. J., Eyles, D. W., Burne, T. H., Hofman, A., Tiemeier, H., Steegers, E. A. & Gaillard, R. (2016). Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. *The American journal of clinical nutrition*, 103, 1514-1522.

- Mills, L. W. & Moses, D. T. (2002). Oral health during pregnancy. *MCN: The American Journal of Maternal/Child Nursing*, 27, 275-280.
- Millward, A., Shaw, L. & Smith, A. (1994). Dental erosion in four-year-old children from differing socioeconomic backgrounds. *ASDC journal of dentistry for children*, 61, 263-266.
- Mirza, K. B., Al-Saidy, A. H. & Mohammad, C. A. (2013). The Prevalence And Severity of Periodontal Disease in Different Stages of Pregnancy and in Women Taking Oral (Contraceptive Pills) in Sulaimani City, Kurdistan Region, Iraq. *Diyala Journal of Medicine*, 4, 61-73.
- Mital, P., Agarwal, A., Raisingani, D., Mital, P., Hooja, N. & Jain, P. (2013). Dental caries and gingivitis in pregnant women. *Age*, 25, 166.
- Miyazaki, H., Yamashita, Y., Shirahama, R., Goto-kimura, K., Shimada, N., Sogame, A. & Takehara, T. (1991). Periodontal condition of pregnant women assessed by CPITN. *Journal of clinical periodontology*, 18, 751-754.
- Moazzez, R. & Bartlett, D. (2014). Intrinsic causes of erosion. *Erosive tooth wear*, 25, 180-196.
- Mohammad, C. (2005). The prevalence and severity of periodontal disease in different stages of pregnancy. *Sc thesis, college of dentistry, University of Sulaimania*.
- Moore, C., Murphy, M. M., Keast, D. R. & Holick, M. F. (2004). Vitamin D intake in the United States. *Journal of the American Dietetic Association*, 104, 980-983.
- Morelli, E., Broadbent, J., Leichter, J. & Thomson, W. (2018). Pregnancy, parity and periodontal disease. *Australian dental journal*, 63, 270-278.
- Moss, K. L., Beck, J. D. & Offenbacher, S. (2005). Clinical risk factors associated with incidence and progression of periodontal conditions in pregnant women. *Journal of clinical periodontology*, 32, 492-498.
- Mukherjee, P. & Almas, K. (2010). Orthodontic considerations for gingival health during pregnancy: a review. *International journal of dental hygiene*, 8, 3-9.
- Mutlak, N. Q. (2016). *Selected Salivary Physico-Chemical Characteristics in Relation to Oral Health Status for a sample of Pregnant Women*. University of Baghdad.

(N)

- Nagi, R., Sahu, S. & Nagaraju, R. (2016). oral health, nutritional knowledge, and practices among pregnant women and their awareness relating to adverse pregnancy outcomes. *journal of indian academy of oral medicine and radiology*, 28, 396.
- Namal, N., Can, G., Vehid, S., Koksal, S. & Kaypmaz, A. (2008). dental health status and risk factors for dental caries in adults in istanbul, turkey. *emhj-eastern mediterranean health journal*, 14 (1), 110-118, 2008.

- Nguyen, J. G. L., Nanayakkara, S. & Holden, A. C. (2020). knowledge, attitudes and practice behaviour of midwives concerning periodontal health of pregnant patients. *international journal of environmental research and public health*, 17, 2246.
- Nishida, M., Grossi, S. G., Dunford, R. G., Ho, A. W., Trevisan, M. & Genco, R. J. (2000). Calcium and the risk for periodontal disease. *journal of periodontology*, 71, 1057-1066.
- Nunn, J. H. (1996). prevalence of dental erosion and the implications for oral health. *european journal of oral sciences*, 104, 156-161.

(O)

- Offenbacher, S. (2004). Maternal periodontal infections, prematurity, and growth restriction. *Clinical obstetrics and gynecology*, 47, 808-821.
- Offenbacher, S., Katz, V., Fertik, G., Collins, J., Boyd, D., Maynor, G., Mckaig, R. & Beck, J. (1996). Periodontal infection as a possible risk factor for preterm low birth weight. *Journal of periodontology*, 67, 1103-1113.
- OHCDPE, W. (2012). Oral health care during pregnancy: a national consensus statement. *Washington, DC: National Maternal and Child Oral Health Resource Center*.
- Omale, J. J. (2014). Oral Health Knowledge, Attitudes, and Practices Among Secondary School Students in Nigeria.
- Opal, S., Garg, S., Jain, J. & Walia, I. (2015). Genetic factors affecting dental caries risk. *Australian dental journal*, 60, 2-11.
- Organization, W. H. (2013). *Oral health surveys: basic methods*, World Health Organization.
- Organization, W. H. (2015). *WHO recommendations on health promotion interventions for maternal and newborn health 2015*, World Health Organization.
- Ortiz-sánchez, B. J., Legorreta-Herrera, M. & Rodriguez-Sosa, M. (2021). Influence of Gestational Hormones on the Bacteria-Induced Cytokine Response in Periodontitis. *Mediators of Inflammation*, 2021, 5834608.
- Özen, B., Özer, L., Başak, F., Altun, C. & Acikel, C. (2012). Turkish women's self-reported knowledge and behavior towards oral health during pregnancy. *Medical Principles and Practice*, 21, 318-322.
- Öztürk, L., Akyuz, S., Garan, A. & Yarat, A. (2013). Salivary and dental-oral hygiene parameters in 3rd trimester of pregnancy and early lactation: The effect of education. *Marmara dental journal*, 1, 1-8.

(P)

- Palacios, C. & Gonzalez, L. (2014). Is vitamin D deficiency a major global public health problem? *The Journal of steroid biochemistry and molecular biology*, 144, 138-145.

- Paquette, D. W. (2002). The periodontal infection-systemic disease link: a review of the truth or myth. *Journal of the International Academy of Periodontology*, 4, 101-109.
- Parveen, K. & Al-khuraif, A. A. (2010). Prevalence of dental caries among female patients attending a dental hygiene clinic, RIYADH. *Arabia*, 1, 6.
- Pashayev, A. C., Mammadov, F. U. & Huseinova, S. T. (2011). An investigation into the prevalence of dental caries and its treatment among the adult population with low socio-economic status in baku, azerbaijan. *OHDM*, 10, 7-12.
- Patil, S., Thakur, R., Madhu, K., Paul, S. T. & Gadicherla, P. (2013). Oral health coalition: knowledge, attitude, practice behaviours among gynaecologists and dental practitioners. *Journal of international oral health: JIOH*, 5, 8.
- Pedrão, A. M. N., Andrews Portes, L., Padilha Gomes, E., Figueira Teixeira, F., Da Costa, P. A. & De Oliveira, N. C. (2018). Erosive tooth wear and dietary patterns: a clinical study. *Oral Health Prev Dent*, 16, 145-151.
- Pereira, W. D. (2017). Knowledge, attitude and practice on oral hygiene measures among students in rural areas: Kanchipuram. *The Pharma Innovation*, 6, 382.
- Perzanowska-Brzeszkiewicz, K. & Marcinowska-Suchowierska, E. (2012). Witamina D a choroby przewodu pokarmowego Vitamin D and gastrointestinal diseases.
- Pinto, G. D. S., Costa, F. D. S., Machado, T. V., Hartwig, A., Pinheiro, R. T., Goettems, M. L. & Demarco, F. F. (2018). Early-life events and developmental defects of enamel in the primary dentition. *Community dentistry and oral epidemiology*, 46, 511-517.
- Preethi, B., Reshma, D. & Anand, P. (2010). Evaluation of flow rate, pH, buffering capacity, calcium, total proteins and total antioxidant capacity levels of saliva in caries free and caries active children: an in vivo study. *Indian Journal of Clinical Biochemistry*, 25, 425-428.
- Priya, SP. Catherine, NP. Heli, T. Alexandre M. (2016). Physiological changes in pregnancy. *CVJ of Africa*; 27(2).

(R)

- Raber-Durlacher, J., Van Steenbergen, T., Van der Velden, U., De Graaff, J. & Abraham-Inpijn, L. (1994). Experimental gingivitis during pregnancy and post-partum: clinical, endocrinological, and microbiological aspects. *Journal of clinical periodontology*, 21, 549-558.
- Radhi, N. (2009). *Oral health status in relation to nutritional analysis and salivary constituents among a group of children with Down's*

syndrome in comparison to normal children. Ph. D. Thesis, College of Dentistry, University of Baghdad.

- Radhi, N. J. (2012). Salivary vitamins and total proteins, in relation to cariesexperience and gingival health, according to nutritional status of a group of five-year old children. *Journal of baghdad college of dentistry*, 24.
- Radnai, M., Gorzó, I., Nagy, E., Urbán, E., Eller, J., Novák, T. & Pál, A. (2005). Caries and periodontal state of pregnant women. Part I. Caries status. *Fogorvosi szemle*, 98, 53-57.
- Rai, B., Jain, R., Kharb, S. & ANAND, S. (2007). Dental caries and oral hygiene status of 8 to 12 year school children of Rohtak: a brief report. *Internet J Dent Sci*, 5.
- Raj, J. P., Oommen, A. M. & Paul, T. V. (2015). Dietary calcium intake and physical activity levels among urban South Indian postmenopausal women. *Journal of Family Medicine and Primary Care*, 4, 461.
- Rakchanok, N., Amporn, D., Yoshida, Y., Harun-Or-Rashid, M. & Sakamoto, J. (2010). Dental caries and gingivitis among pregnant and non-pregnant women in Chiang Mai, Thailand. *Nagoya J Med Sci*, 72, 43-50.
- Ramazani, N., Aoyub Rigi ladez, M., Zareban, I. & Bagheri, E. (2014). Oral health care education regarding the gingival health, knowledge, attitude, and behavior of the pregnant women. *Health Scope*, 3.
- Rao, A. (2012). *Principles and practice of pedodontics*, JP Medical Ltd.
- Raudsepp, L., Viira, R. & Hannus, A. (2010). Prediction of physical activity intention and behavior in a longitudinal sample of adolescent girls. *Perceptual and motor skills*, 110, 3-18.
- Rawi, N. A. A. & Jameel, S. A. (2019). Assessment of caries experience, enamel defects and selected salivary biomarkers in children with nutritional rickets. *Journal of baghdad college of dentistry*, 31.
- Register-Mihalik, J. K., Guskiewicz, K. M., Mcleod, T. C. V., Linnan, L. A., Mueller, F. O. & Marshall, S. W. (2013). Knowledge, attitude, and concussion-reporting behaviors among high school athletes: a preliminary study. *Journal of athletic training*, 48, 645-653.
- Richards, W. & Filipponi, T. (2011). An effective oral health promoting message? *British dental journal*, 211, 511-516.
- Riley III, J. L., Gilbert, G. H. & Heft, M. W. (2006). Dental attitudes: proximal basis for oral health disparities in adults. *Community dentistry and oral epidemiology*, 34, 289-298.
- Ritter, A. V. (2017). *Sturdevant's art & science of operative dentistry-e-book*, Elsevier Health Sciences.
- Robinson, P. & Schmerman, M. (2015). Influence of pregnancy on the oral cavity. *Glob Libr Women's Med*, 10, 38-43.
- Rockenbach, M. I., Marinho, S. A., Veeck, E. B., Lindemann, L. & Shinkai, R. S. (2006). Salivary flow rate, pH, and concentrations of

calcium, phosphate, and sIgA in Brazilian pregnant and non-pregnant women. *Head & Face Medicine*, 2, 1-5.

- Roshna, T., Thomas, R., Nandakumar, K. & Banerjee, M. (2006). A case-control study on the association of human leukocyte antigen-A* 9 and-B* 15 alleles with generalized aggressive periodontitis in an Indian population. *Journal of periodontology*, 77, 1954-1963.

(S)

- Saerah NB, Ismail NM, Naing L and Ismail AR. (2006). Prevalence of tooth wear among 16-year-old secondary school children in Kota Bharu Kelantan. *Arch Orofac Sci*, 1: 21 – 28.
- Salameh, R. (2000). The periodontal status during pregnancy and intake of contraceptives. *A thesis presented to the University of Baghdad for the degree of Master of Science in Periodontics*.
- Salman, F. D., Qasim, A. A. & Saleh, K. M. (2005). Oral health status and treatment needs of Iraqi and Yemeni dental students (A comparative study). *Al-Rafidain Dental Journal*, 5, 46-51.
- Salvolini, E., Di Giorgio, R., Curatola, A., Mazzanti, L. & Fratto, G. (1998). Biochemical modifications of human whole saliva induced by pregnancy. *BJOG: An International Journal of Obstetrics & Gynaecology*, 105, 656-660.
- Santos Neto, E. T. D., Oliveira, A. E., Zandonade, E. & Leal, M. D. C. (2012). Acesso à assistência odontológica no acompanhamento pré-natal. *Ciência & Saúde Coletiva*, 17, 3057-3068.
- Schipper, R. G., Silletti, E. & Vingerhoeds, M. H. (2007). Saliva as research material: biochemical, physicochemical and practical aspects. *Archives of oral biology*, 52, 1114-1135.
- Schopper, D., Doussantousse, S. & Orav, J. (1993). Sexual behaviors relevant to HIV transmission in a rural African population: How much can a KAP survey tell us? *Social science & medicine*, 37, 401-412.
- Shabbir, S., Zahid, M., Qazi, A. & Younus, S. M. (2015). Oral Hygiene among Pregnant Women. *The Professional Medical Journal*, 22, 106-111.
- Shahnazi, H., Hosseintalaei, M., Ghashghaei, F. E., Charkazi, A., Yahyavi, Y. & Sharifirad, G. (2016). Effect of educational intervention on perceived susceptibility self-efficacy and DMFT of pregnant women. *Iranian Red Crescent Medical Journal*, 18.
- Shamsi, M., Headarnia, A., Niknami, S. & rafiee, M. 2012. Development and psychometric assessment of an oral health instrument based on Health Belief Model in pregnant women. *Journal of Arak University of Medical Sciences*, 15, 45-56.
- Shamsi, M., Hidarnia, A., Niknami, S., Rafiee, M., Zareban, I. & Karimy, M. (2013). The effect of educational program on increasing oral

health behavior among pregnant women: Applying health belief model. *Health Education and Health Promotion*, 1, 21-36.

- Sharma, A., Mathur, V. P. & Sardana, D. (2014). Effective Management of a pregnancy tumour using a soft tissue diode laser: a case Report. *Laser therapy*, 23, 279-282.
- Shennan, A. H. (2003). Recent developments in obstetrics. *Bmj*, 327, 604-608.
- Shenoy, R. P., Nayak, D. G. & Sequeira, P. S. (2009). Periodontal disease as a risk factor in pre-term low birth weight-An assessment of gynecologists' knowledge: A pilot study. *Indian Journal of Dental Research*, 20, 13.
- Shubber, S. & Al-Obaidi, W. (2014). Oral health status among kindergarten children in relation to socioeconomic status in Al-Najaf governorate-Iraq. *A master thesis, College of Dentistry, University of Baghdad*.
- Shuler, C. F. (2001). Inherited risks for susceptibility to dental caries. *Journal of dental education*, 65, 1038-1045.
- Siddiqui, T. M., Akram, S., Wali, A., Mahmood, P. & Rais, S. (2018). Dental caries and gingivitis amongst pregnant women: A sample from urban and rural areas of karachi. *Pakistan Oral & Dental Journal*, 38, 88-91.
- Silk, H., Douglass, A. B., Douglass, J. M. & Silk, L. (2008). Oral health during pregnancy. *American family physician*, 77, 1139-1144.
- Silk, H., Douglass, A. B., Douglass, J. M. & Silk, L. (2008). Oral health during pregnancy. *American family physician*, 77, 1139-1144.
- Silness, J. & Löe, H. (1964). Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. *Acta odontologica scandinavica*, 22, 121-135.
- Silva De Araujo Figueiredo, C., Goncalves Carvalho Rosalem, C., Costa Cantanhede, A. L., Abreu Fonseca Thomaz, É. B. & Fontoura Nogueira Da Cruz, M. C. (2017). Systemic alterations and their oral manifestations in pregnant women. *Journal of Obstetrics and Gynaecology Research*, 43, 16-22.
- Skinner, H. G., Michaud, D. S., Giovannucci, E., Willett, W. C., Colditz, G. A. & Fuchs, C. S. (2006). Vitamin D intake and the risk for pancreatic cancer in two cohort studies. *Cancer Epidemiology and Prevention Biomarkers*, 15, 1688-1695.
- Soderling, E., Isokangas, P., Pienihäkkinen, K. & Tenovuo, J. (2000). Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. *Journal of Dental Research*, 79, 882-887.
- Sogi, G. & Bhaskar, D. (2001). Dental caries and oral hygiene status of 13-14 year old school children of Davangere. *Journal of the Indian Society of Pedodontics and Preventive Dentistry*, 19, 113-117.

- Soulissa, A. G. (2014). Hubungan kehamilan dan penyakit periodontal. *Jurnal PDGI*, 63, 72.
- Specker, B. (2004). Nutrition influences bone development from infancy through toddler years. *The Journal of nutrition*, 134, 691S-695S.
- Stein, S. H. & Tipton, D. A. (2011). Vitamin D and its impact on oral health—an update. *Journal of the Tennessee Dental Association*, 91, 30.
- Stevenson, A. (2010). *Oxford dictionary of English*, Oxford University Press, USA.
- Stewart, C. (2006). *Food and nutrition guidelines for healthy pregnant and breastfeeding women: a background paper*, Ministry of Health.
- Suhail, I. (2014). Oral health status in relation to nutritional status among kindergarten children in Al-Ramadi city/Iraq. *A master thesis, College of Dentistry, University of Baghdad*.
- Suliaman, A. (1995). Oral health status and cariogenic microflora during pregnancy. *A master thesis, College of Dentistry, University of Baghdad*. (T)
- Taba JR, M., Souza, S. L. S. D. & Mariguela, V. C. (2012). Periodontal disease: a genetic perspective. *Brazilian oral research*, 26, 32-38.
- Takahashi, N. & Nyvad, B. 2008. Caries ecology revisited: microbial dynamics and the caries process. *Caries research*, 42, 409-418.
- Tenovuo J, Lagerlöf F. Saliva (1996) In: Textbook of clinical cariology. In: Thylstrup A and Fejerskov O, eds. 2nded. Munksgaard, Copenhagen: Denmark; P.17-44.
- Teshome, A. & YitaYeh, A. (2016). Relationship between periodontal disease and preterm low birth weight: systematic review. *Pan African Medical Journal*, 24.
- Tibor K, P. F., Peter C (2007) . Saliva in health and disease. 1sted. John Wiley and Sons.
- Tilakaratne, A., Soory, M., Ranasinghe, A., Corea, S., Ekanayake, S. & De Silva, M. (2000). Periodontal disease status during pregnancy and 3 months post-partum, in a rural population of Sri-Lankan women. *Journal of clinical periodontology*, 27, 787-792.
- Tiwari, M. (2011). Science behind human saliva. *Journal of natural science, biology, and medicine*, 2, 53.
- Tiznobaik, A., Taheri, S., Torkzaban, P., Ghaleiha, A., Soltanian, A. R., Omrani, R., & Shrinzad, M. (2019). Relationship between dental plaque formation and salivary cortisol level in pregnant women. *European oral research*, 53(2), 62-66.
- Touger-Decker, R. & Van Loveren, C. (2003). Sugars and dental caries. *The American journal of clinical nutrition*, 78, 881S-892S.
- Treasure, E., Kelly, M., Nuttall, N., Nunn, J., Bradnock, G. & White, D. (2001). Factors associated with oral health: a multivariate analysis of results from the 1998 Adult Dental Health survey. *British dental journal*, 190, 60-68.

(U)

- Ur Rehman, M. M., Mahmood, N. & Ur Rehman, B. (2008). The relationship of caries with oral hygiene status and extra-oral risk factors. *J Ayub Med Coll Abbottabad*, 20, 103-8.
- Usha, C., & R, S. (2009). Dental caries - A complete changeover (Part I). *Journal of conservative dentistry : JCD*, 12(2), 46–54.
- Uwitonze, A.M., Rahman, S., Ojeh, N., Grant, W.B., Kaur, H., Haq, A. and Razzaque, M.S., 2020. Oral manifestations of magnesium and vitamin D inadequacy. *The Journal of steroid biochemistry and molecular biology*, 200, p.105636.

(V)

- Vadiakas, G. & Lianos, C. (1988). Correlation between pregnancy and dental caries. *Hellenika stomatologika chronika. Hellenic stomatological annals*, 32, 267-272.
- Valm, A.M., (2019). The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. *Journal of molecular biology*, 431(16), pp.2957- 2969.
- Van dyke, T. E. & Dave, S. (2005). Risk factors for periodontitis. *Journal of the International Academy of Periodontology*, 7, 3.
- Vogt, M., Sallum, A. W., Cecatti, J. G. & Morais, S. S. (2012). Factors associated with the prevalence of periodontal disease in low-risk pregnant women. *Reproductive health*, 9, 1-8.
- Von hurst, P. R., Stonehouse, W. & Coad, J. (2010). Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—a randomised, placebo-controlled trial. *British Journal of Nutrition*, 103, 549-555.

(W)

- W, D. (2009). Salivary diagnostics. 1st ed. John Wiley and Sons.
- Wagner, Y. & Heinrich-Weltzien, R. (2016) Midwives' oral health recommendations for pregnant women, infants and young children: results of a nationwide survey in Germany. *BMC Oral Health*, 16, 1-8.
- Waite, M. (2009). *Oxford thesaurus of English*, Oxford University Press.
- Weaver C, H. R. (2010). Calcium in human health. 1st ed. Humana Press.
- WEI, S. Q., QI, H. P., LUO, Z. C. & FRASER, W. D. 2013. Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis. *J Matern Fetal Neonatal Med*, 26, 889-99.
- White, J. H. (2008). Vitamin D signaling, infectious diseases, and regulation of innate immunity. *Infection and immunity*, 76, 3837-3843.

- WHO (2003). Oral Health Promotion: An Essential Element of a Health -Promoting School. WHO information series on school health. World Health Organization, Geneva.
- WHO (2014). Fact sheet: Oral health. World Health Organization.
- WHO, J. K. (1997). Oral health surveys: basic methods. *Seoul: Komoonsa*, 21, 8.
- Wilkins, R. G. & Wilkins, P. C. (2003). *The role of calcium and comparable cations in animal behaviour*, Royal Society of Chemistry.
- Williams, L. & Wilkins. (2012). The Johns Hopkins Manual of Gynecology and Obstetrics. 4 ed.:438. ISBN 9781451148015.
- Wilson, L. R., Tripkovic, L., Hart, K. H. & Lanham-New, S. A. (2017). Vitamin D deficiency as a public health issue: using vitamin D2 or vitamin D3 in future fortification strategies. *Proceedings of the Nutrition Society*, 76, 392-399.
- Woelber, J. P. & Tennert, C. (2020). Diet and periodontal diseases. *The Impact of Nutrition and Diet on Oral Health*, 28, 125-133.
- Wojtyla, A., Bojar, I., Boyle, P., Zatonski, W., Marcinkowski, J. T. & Bilinski, P. (2011). Nutritional behaviours among pregnant women from rural and urban environments in Poland. *Annals of Agricultural and Environmental Medicine*, 18.
- World Health Organization. Oral health surveys: basic methods. World Health Organization; 2013.
- Wright, F. (1982). Children's perception of vulnerability to illness and dental disease. *Community dentistry and oral epidemiology*, 10, 29-32.

(X)

- Xiong, X., Buekens, P., Fraser, W., Beck, J. & Offenbacher, S. (2006). Periodontal disease and adverse pregnancy outcomes: a systematic review. *BJOG: An International Journal of Obstetrics & Gynaecology*, 113, 135-143.

(Y)

- Yalcin, F., Basegmez, C., Isik, G., Berber, L., Eskinazi, E., Soydinc, M., Issever, H. & Onan, U. (2002). The effects of periodontal therapy on intracrevicular prostaglandin E2 concentrations and clinical parameters in pregnancy. *Journal of periodontology*, 73, 173-177.
- Yan-Fang ren, D. (2011). Dental erosion: etiology, diagnosis and prevention. *ADA: The academy of dental therapeutic and stomatology*, 2011.
- Yas, B. (2004). *Evaluation of oral health status treatment needs knowledge, attitude and behavior of pregnant women in Baghdad governorate*. M. Sc., Thesis, College of Dentistry, University of Baghdad.

- Yas, B. A. (2000). Dental caries severity in relation to selected salivary variables among a group of pregnant women in Baghdad city/Iraq. *changes*, 1, 2.
- Yenen, Z. & Görucu, J. (2004). Engelli Hastalara yaklaşım. *Dişhekimliği Dergisi*, 57, 40-43.
- Youssef, D. A., Miller, C. W., El-Abbassi, A. M., Cutchins, D. C., Cutchins, C., Grant, W. B. & Peiris, A. N. (2011). Antimicrobial implications of vitamin D. *Dermato-endocrinology*, 3, 220-229.

(Z)

- Zaīchk, V. & Sht, B. (1994). The chemical element content of mixed unstimulated saliva in periodontal diseases. *Stomatologija*, 73, 8-11.
- Zhou, M., Zhuang, W., Yuan, Y., Li, Z. & Cai, Y. (2016). Investigation on vitamin D knowledge, attitude and practice of university students in Nanjing, China. *Public health nutrition*, 19, 78-82.
 - Zittermann, A. (2003). Vitamin D in preventive medicine: are we ignoring the evidence? *British Journal of Nutrition*, 89, 552-572